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Dynamics of Axisymmetric Drops Impacting onto 

Heterogeneous Surfaces 

 

Abstract 

The way a droplet behaves when it lands on a surface depends on the characteristics 

of the surface and the flow conditions of the droplet. It can deposit, rebound, splash, 

etc. There is delimited research on how surface roughness and chemical composition 

affect the deformation of droplets upon impact, in comparison to the studies done on 

smooth surfaces. Our model uses two-phase flow to simulate the axisymmetric motion 

of droplets over surfaces with heterogeneities by combining the Navier-Stokes 

equations for motion with the Cahn-Hilliard equation for tracking the phase-field. We 

integrate the problem with a finite element solver (FEM). To accomplish this, we use 

piecewise linear, 𝑃1, triangular finite elements for the pressure components, and 

piecewise quadratic, 𝑃2, for the velocity, phase field and chemical potential, in order 

to integrate the governing equations. We not only discuss the interpolation types of 

viscosity and phase field but also suggest a new quadratic interpolant for fluids. As a 

starting point, we examine the effect of droplets impacting onto smooth and chemically 

uniform surfaces, and compare our findings with experimental results to validate our 

solver. We show how the maximum spreading diameter, 𝑑𝑚𝑎𝑥, after impact scales over 

uniform energy surfaces and compare with the literature. Dimensionless parameters 

Weber, Reynolds, Cahn, Capillary, Peclet numbers and density with viscosity 

contrasts decide the outcome on the surfaces, however, by manipulating surface 

energy, it is possible to control the deformation of impacting droplets, even when other 

parameters are held constant. We designed a wettability pattern, added roughness and 

observe we could change the fate of an impacting drop. 

Keywords: Drop Impact, Wettability, Roughness, Finite Element Method 
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Heterojen Yüzeylere Çarpan Aksisimetrik  

Damlaların Dinamiği 

 

Öz 

Bir damlacığın yüzeye çarptığı durum, yüzeyin özellikleri ve damlacığın akış 

koşullarına bağlıdır. Damlacık yüzeye tutunabilir, geri tepebilir, çarparak dağılabilir 

vb. Pürüzsüz yüzeylerde yapılan araştırmalara kıyasla, yüzey pürüzlülüğü ve kimyasal 

bileşimin damlacıkların çarpışması üzerindeki etkileri hakkında sınırlı araştırma 

yapılmıştır. Modelimiz, hareket için Navier-Stokes denklemlerini faz alanını izlemek 

için Cahn-Hilliard denklemiyle birleştirerek heterojen yüzeyler üzerinde damlacıkların 

aksismetrik hareketini simüle etmek için iki fazlı akışı kullanır. Problemi sonlu eleman 

çözücüsü (FEM) ile integre ediyoruz. Bunu yapmak için, basınç bileşenleri için parçalı 

doğrusal, 𝑃1, ve hız, faz alanı ile kimyasal potansiyel için parçalı ikinci dereceden, 

𝑃2, üçgenimsi elemanlar kullanıyoruz. Bilinen interpolasyon tiplerinin yanı sıra sıvılar 

için yeni bir ikinci dereceden interpolasyon öneriyoruz. Başlangıç noktası olarak, düz 

ve kimyasal olarak homojen yüzeylere çarpan damlacıkların etkisini inceleyerek, 

bulgularımızı deneysel sonuçlarla karşılaştırarak çözücümüzü doğruluyoruz. Darbe 

sonrası maksimum yayılma çapın 𝑑𝑚𝑎𝑥 ile nasıl ölçeklendiğini ve homojen enerji 

yüzeyleri üzerinde nasıl değiştiğini gösteriyor ve literatürle karşılaştırıyoruz. Weber, 

Reynolds, Cahn, Kılcallık, Peclet sayıları ve yoğunluk ile viskozite farkları, yüzeyler 

üzerindeki sonucu belirler, ancak yüzey enerjisini manipüle ederek, diğer parametreler 

sabit tutulsa bile, çarpan damlacıkların deformasyonunu kontrol etmek mümkündür. 

Islanabilirlik modeli tasarladık, pürüzlülük ekledik ve çarpan bir damlanının kaderini 

değiştirebileceğimizi gözlemledik. 

Anahtar Kelimeler: Damla Çarpması, Islanabilirlik, Pürüzlülük, Sonlu Elemanlar 

Metodu  
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Raison d'être, thou and thy warm. 
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Chapter 1 

Introduction 

The impact of drops has been a prominent part of our daily lives, often manifesting 

through various phenomena that arise from their inherent nature which may go 

unnoticed. The behavior after impact can be categorized into several regimes such as 

deposition, prompt splash, corona splash, break-up, partial rebound and complete 

rebound.  One of the earliest studies dates back to the late 19th century by Worthington 

[1, 2] about drops of liquid splashing and early 20th century by G.I. Taylor built upon 

Einstein's research on the flow properties of liquids containing suspended solid 

particles, by substituting fluid droplets for the solid particles [3], these studies have  

attracted a lot of attention from scholars and led to the reporting of numerous studies 

utilizing theoretical, experimental, and numerical techniques over the years. Examples 

from industry can be given as, spray cooling of surfaces to achieve efficient heat 

transfer [4, 5], ink-jet printing for generating droplets on demand [6], spray coating 

with fluid atomization which involves breaking up the coating material into small 

droplets [7], solder-jet technology for aircraft [8] and DNA microarrays and synthesis 

[9] and etc., for existing and emerging technologies. There has been an urge to control 

such physics and such a vast array of applications, this implies that the physical and 

operational parameters encompass a wide spectrum and can encompass the concept of 

wetting, impact dynamics, and multiphase flows: phase dynamics. 

1.1 Wetting 

Wetting is the ability of a liquid to adhere to a solid surface, which is determined by 

the interaction between the liquid and the solid at their interface and affected with 

surface tension. This tension force causes droplets to take on a spherical shape with no 
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influence by external forces [10]. The study of this phenomenon, including the 

attractive and repulsive forces at play, has a long history dating back to 1805 [11]. It 

was discovered by Poisson [12] that a continuous transition of density, rather than a 

sharp boundary, must be taken into account to fully understand surface tension.  

Surface tension can be explained by the interaction of fluid particles with their 

surroundings. These interactions involve both attractive and repulsive forces. The 

repulsive forces can be thought of as contact forces and are relatively short-ranged, 

solely sensitive to the density of particles in the close vicinity. As a result, they are 

isotropic, meaning they act equally in all directions. On the other hand, the attractive 

forces are long-ranged and depend on the gradual change of particle density [13, 14]. 

The surface tension of a liquid - vapor interface can be comprehended by considering 

the balance of forces acting on the interface. When an imaginary plane is cut through 

the interface, perpendicular to its surface, the pressure in this direction (normal to the 

interface) is found to be constant. This is because the densities of both the liquid and 

vapor phases decrease towards the interface, causing the repulsive forces between 

particles to decrease. At the same time, the attractive forces between particles also 

decrease due to the decrease in the number of interaction partners. The result is a 

balance between the decreasing repulsive and attractive forces, leading to a constant 

pressure in the normal direction. 

On the other hand, when the imaginary plane is cut through the interface tangentially 

to its surface, the pressure in this direction is found to decrease. This is because the 

repulsive forces between particles also decrease in this direction, but the attractive 

forces between particles decrease at a slower rate due to the greater number of 

interaction partners in this direction. The result is a net decrease in the pressure 

tangential to the interface. The integral of this pressure drop in the normal direction is 

called the surface tension, which is a force per unit length [15, 16]. 

There are several different types of wetting, including complete wetting, partial 

wetting, and non-wetting. Complete wetting occurs when the liquid completely covers 

the surface and forms a thin film on it. Partial wetting occurs when the liquid covers 

only part of the surface, and non-wetting occurs when the liquid does not wet the 

surface at all and forms beads or drops on it as shown in Figure 1.1. 
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Figure 1.1: (a) perfect wetting, 𝜃 = 0, (b) partial wetting, 𝜃 < 90, hydrophilic 

surface, (c) partial wetting 𝜃 > 90, hydrophobic surface, (d) non-wetting 𝜃 = 180. 

 

In the drop scenario (b) and (c) the liquid is in contact with a solid surface surrounded 

with vapor and there are three interfaces that can be identified with surface tension: 

the liquid-vapor interface 𝜎LV, the liquid-solid interface 𝜎SL, and the solid-vapor 

interface 𝜎SV. 

 

Figure 1.2: Droplet on solid surface with contact angle 𝜃. 

 

The relationship between surface tensions and the contact angle can be determined by 

analyzing Figure 1.2. The force balance in the horizontal requires 

 σLV cos 𝜃 = 𝜎SV − 𝜎SL (1.1) 

which is known as Young’s condition [11] and is valid over ideal surfaces which are 

atomically smooth and chemically homogeneous. 

Surface heterogeneity refers to the presence of different physical properties or 

characteristics on the surface of substrate or fluid interface. This can be caused by a 

variety of factors, such as variations in temperature, chemical composition, or surface 

roughness. Since we work on isothermal systems, last two are the scope of the thesis. 

(a) (b) (c) (d) 
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One way in which the chemical composition of a surface can affect the state of a liquid 

is through the forces of adhesion and cohesion through surface energy changes of the 

liquid-solid interface [17]. The droplet tends to have a greater attractive force and is 

more prone to wetting for high energy surfaces, while a surface with a chemical 

composition that generates a lower surface energy, the liquid has a weaker attractive 

force and will be less prone to wetting. 

The modification can be made simply by applying a coating as presented in Figure 1.3, 

(a) with a red line or by a treatment to make it more hydrophobic or hydrophilic that 

changes its surface energy. For example, a hydrophobic coated surface make it more 

water-repellent, while a hydrophilic coating can be applied to make it more water-

attracting [18, 19]. 

 

Figure 1.3: Two main wetting states with the different surface heterogeneities. 

 

On the other hand, the presence of particles or impurities of the surface, or in by a 

simple roughness under the fluid can chance the behavior. The roughness on the 

surface may cause the liquid to begin wetting the surface before the main impact, 

resulting in a loss of internal energy. The increase in the contact area between the 

droplet and the surface leads to a less impact force while doing that can also cause the 

flow to become chaotic and it increases the drag forces acting on the fluid particles in 

the droplet, which can reduce its impact velocity before the full impact of its body 

[20]. In the Figure 1.3 (b), we show the influence of structures on wetting which is the 

well-known Cassie-Baxter state [21]. 

After discussing wetting, it is important to discuss impact dynamics as the rest of the 

thesis is about this behavior.  

(a) (b) 
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1.2 Drop Impact 

We start this section by describing different regimes observed after impacting drops. 

Six distinct regimes are reported through the experimental studies as shown in Figure 

1.4 and this rich physics has been explained by many researchers [22-24]. 

 

Figure 1.4: Different regimes of droplets impacting on substrate, adapted from 

Rioboo et al. (2001) [22]. 

 

In the order shown 1 through 6 in Figure. 1.4, we itemize all cases below. 

1. Deposition is the process in which a droplet attaches to a surface upon impact, 

without breaking apart. This typically happens when a small droplet with low velocity 

hits a smooth and wet surface. 
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2. When a drop hits a rough surface, it may produce "prompt splash," a process in 

which droplets are generated at the point of contact between the solid, gas, and liquid. 

This phenomenon is characterized by the drop's high outward velocity at the start of 

spreading on the surface. 

3. If the surface tension of the wall is reduced, it may cause the liquid layer to separate 

from the wall, resulting in a "corona splash." 

4. When a liquid retracts from its maximum spread on a wetting surface, "receding 

breakup" can occur. The reason for this is that as the droplet retracts, the angle of 

contact decreases, resulting in some of the droplet remaining on the surface. On 

superhydrophobic surfaces, the retracting drop can break into smaller droplets called 

satellite droplets during both the spreading and retracting phases. This may be due to 

capillary instability, and these satellite droplets can also break apart. 

5 - 6. A drop that recedes after impact can produce either a "partial rebound" or 

"complete rebound" phenomenon. During the receding process, the drop's kinetic 

energy causes the liquid to rise up and form a vertical column. When a droplet only 

releases a portion of itself from the surface while remaining attached, it is called a 

partial rebound. If the droplet completely detaches from the surface, it is known as a 

complete rebound. The type of rebound that takes place is determined by the angle of 

contact as the droplet recedes from the surface. A partial rebound happens when the 

angle is low, while a complete rebound occurs when the angle is high, provided that 

the drop has sufficient kinetic energy. 

When all impacts are considered, for dimensional parameter groups to perform a 

certain phenomenon, their quantities must be in certain thresholds or pass to achieve 

another. This is summarized by Rioboo et al. [22] in the following table 1.1. In the 

order shown in the first column, 𝐮 is the drop's impact velocity, 𝐷 is the diameter of 

the drop, 𝜎 is the surface tension, 𝜇 is the viscosity and 𝜃 is the contact angle with the 

surface. The arrow directions show with the increase or decrease of the parameter, 

observance of the corresponding regime may be possible. 
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Table 1.1: Effect of parameters on impact regime. 

 

 

Before getting involved with the body of thesis we need to clarify the last but the most 

important topic for thesis: The multiphase flow, phase dynamics. We first give 

fundamental definitions with the concept then there are several approaches that can be 

used to model droplet phenomena, these continue with the numerical and theoretical 

models. 

1.3 Multiphase Flows: Phase Dynamics 

Multiphase flow refers to the movement of materials with more than one 

thermodynamic phase at the same time or two different fluids at the same phase. A 

phase is a substance that has a distinctive chemical or physical property. The specific 

property used to identify the phase can vary depending on the purpose of the research. 

For example, in carbon chemistry, the crystal structure is used to identify the two stable 

phases of carbon: diamond and graphite [25]. The electrical polarization is frequently 

employed as a means of identifying different phases in the study of ferroelectric 

ceramics [26]. In the field of fluid mechanics, the proportion of various substances is 

often employed as a means of classifying different phases. This is because these 

substances possess distinct fluid characteristics, such as viscosity, thermal 

conductivity and capillarity. Additionally, the density of a fluid which is closely tied 

to its state of matter is used to differentiate between liquid and gaseous phases. 

A phase transformation refers to a change in the physical or chemical properties of a 

substance that occurs due to a change in the environment. This can include changes in 

temperature, pressure, composition, or other external factors. When involving multiple 

substances, the behavior of the system can become more complex [27]. Equilibrium 
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thermodynamics is an important tool for understanding the equilibrium state of 

immiscible fluids separated by a thin region, known as the interface. With the 

advancement of technology, several simulation models have been developed over the 

years to numerically solve these type of problems. These models allow us to better 

understand and predict the behavior of multiphase systems, and are widely used in 

various fields such as chemical and mechanical engineering. In the next step, we will 

delve deeper into the different types of models and their applications in modeling 

multiphase flows. 

Two types of phase dynamics mentioned over the years and many techniques have 

been developed to model and simulate the simultaneous flow of materials with 

multiple phases and components. These methods can be divided into two categories: 

those that track the movement of the interface between phases, and those that capture 

the properties of the interface [28]. In the following Figure 1.5, all types of methods 

could be seen.  

 

Figure 1.5: Diagram of multiphase flow methods. 

 

The interface-tracking method tracks the interface by aligning computational nodes 

along the interface and moving the mesh with the fluid flow. This method provides a 

very accurate description of the interface because it explicitly traces the movement of 

the interface. However, it requires the use of sophisticated re-meshing techniques, 

which can be computationally expensive. Furthermore, when dealing with problems 

that entail major topological changes, such as interface pinch-off and connection, 

additional controls may be required to update the mesh. Currently, solving three-
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dimensional issues with topological transitions remains challenging when using 

interface-tracking methods. 

Interface-capturing methods involve the identification of different phases by 

introducing extra variables, while the entire fluid domain is included within the 

computation grid. These methods tend to produce less precise interface representations 

compared to interface-tracking methods, even when using similar spatial mesh sizes. 

However, they are relatively easy to implement and computationally efficient since 

there is no need to frequently update the mesh. Additionally, they can handle 

topological transitions without the need for special procedures. 

Front-tracking is a particle-based method, meaning that it represents the interface as a 

set of discrete particles that move with the fluid flow. These particles are connected by 

springs to form a mesh, which is used to interpolate the properties of the interface such 

as surface tension and surface velocity. 

The volume-of-fluid (VOF) method [29] is among the early versions of the interface-

capturing methods. It employs the proportion of one fluid component in each cell for 

identifying different phases and does not track the movement of the interface directly, 

but instead estimates the location of the interface based on the properties of the fluids 

on either side of it but fails to capture some of the physics. 

Phase field methods capture the boundary between two immiscible fluids [30]. These 

methods can compute topological changes in the interface, such as the formation and 

breakup of drops, more naturally, and thus have been successfully applied to multi-

component fluid flows involving large interface deformations. They are based on 

partial differential equations describing the phase field's evolution over time and are a 

continuous function, rather than a discrete set of points or lines so that they can capture 

the small-scale features of the interface more accurately. They do not require ad hoc 

rules or sophisticated re-meshing techniques to update the mesh when the topology of 

the interface changes. However, they can be more computationally expensive to 

implement than other methods. It is the model that we use in this study. 

In the level-set methods, the basic idea is to represent the interface as a scalar function, 

called the level-set function, which is defined on the entire computational domain. The 
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level-set function is chosen such that its zero contour represents the interface of interest 

and it changes with the flow of the velocity field, which is controlled by equations of 

the Hamilton-Jacobi type [31].  

It's important to note that, depending on the context and the specific application of the 

method, the distinction between capturing and tracking may not be clear-cut, and some 

methods may be considered to be doing both capturing and tracking and depending on 

the specific application, some methods may also be more appropriate than others, and 

that the specific method chosen depends on the details of the problem being studied, 

such as the nature of the fluids, the complexity of the geometries, the ratio of densities 

and viscosities, among other factors. 

Phase-field models can be represented by a scalar field, which is a function that maps 

a point in space to a scalar value. The evolution of the concentration field is described 

by the Korteweg, Allen-Cahn or Cahn-Hilliard or with some Spectral Methodized 

equations, while the motion of the fluids is described by the Navier-Stokes equations 

of motion. A diagram for governing equations for phase-field methods is shown in 

Figure 1.6.  

 

Figure 1.6: Diagram of model equations in phase-field. 

 

Briefly, Korteweg method is based on the Korteweg stress tensor, which is a 

generalization of the viscous stress tensor used in the Navier-Stokes equations [32]. 

Cahn-Hilliard, which keeps track of a scalar field called the phase field varies smoothly 

across the interface between different phases [33]. In Allen-Cahn model is then derived 
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by a simplification from the Cahn-Hilliard with conserved order parameters [34]. We 

can either solve them in the steady field means statically or unsteady field dynamically. 

1.4 Motivation 

In recent years, there has been a growing interest in understanding the behaviour of 

droplets and flows in particular, as they are prevalent in many technological 

applications. However, the research on the effects of surface roughness and chemically 

heterogeneous surface on droplets impacting the surface is limited compared to studies 

on smooth surfaces. This thesis aims to study the behaviour of droplets impacting 

surfaces with heterogeneities, specifically chemically heterogeneous surface and 

added surface roughness. By understanding the physics behind droplet-surface 

interactions, we can gain insight into how to design and control these interactions for 

various technological applications. Furthermore, developing a multiphase flow model 

that can accurately predict the behaviour of droplets and droplet-surface interactions, 

have the potential to lead to the design and can pave the way for more efficient and 

effective industrial processes.  

The organization of the thesis is as follows. In Chapter 2, we state our problem, 

introduce all the constitutive models and the derivation of coupled Navier-Stokes and 

Cahn-Hilliard equations and finalize the governing equations. In the following Chapter 

3, the numerical technique we use to reduce to their weak forms with finite element 

method procedure is given. In Chapter 4, we show our solver’s validation results for 

both water and ethanol droplets, various regimes and we give the scaling law for all 

our computed data of drops' maximum spreading and compare with the literature. 

Then, our way to control the deformation by either with a heterogeneous wettability 

pattern or the presence of the surface roughness is given in Chapter 5. In the final 

Chapter 6, we conclude the study with our summation of findings. 
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Chapter 2 

Model Problem 

Initially, we have a spherical droplet surrounded with an ambient fluid over an 

isothermal solid substrate in an axisymmetric system seen in Figure 2.1. Both of the 

fluids have their unique density and viscosity values. The phase represented from +1 

to -1 means a transition from drop to ambient fluid and on the surface of the drop there 

happens a sharp transition to this phase change. Since we only deal with the impact its 

velocity is given as it is ready to impact. During that surface tension and wettability 

plays an important role in deciding which phenomenon occurs. 

 

 

Figure 2.1: Problem domain. 

 

The motion of fluid particles are governed the continuity equation and linear 

momentum balance. We first define the continuity in the form as  

 
𝜕𝜌

𝜕𝑡
+ ∇ ∙ (𝜌𝐔) = 0. (2.1) 

For an incompressible flow, density is constant does not change with time even though 

it varies from one phase to another, (2.1) can be reduced to  
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 ∇ ∙ 𝐔 = 0. (2.2) 

The linear momentum balance requires 

 𝜌
D𝐔

D𝑡
= ∇ ∙ 𝐓 + 𝒇 (2.3) 

where  

 

 𝐓 = −∇𝑝 + 𝛻 ∙ 𝝉 (2.4) 

is the Cauchy stress tensor with following constitutive law (pressure term is excluded) 

and is given by  

 𝝉 = (𝜆 +
2

3
𝜇) (∇ ∙ 𝐔)𝐈 + 𝜇 (∇𝐔 + (∇𝐔)T −

2

3
(∇ ∙ 𝐔)𝐈). (2.5) 

The use of (2.2) reduces (2.5) to 

 𝝉 = 𝜇(∇𝐔 + (∇𝐔)T). (2.6) 

Defining 𝒇 to be the summation of surface tension forces resulting from the shape of 

the interface between the phases, 𝒇𝜎 , and body forces, we only consider the 𝒇𝜎 as the 

effect of gravity is small for small scale drops. The Navier-Stokes equations of motion 

then can be written as  

 𝜌
D𝐔

D𝑡
= −∇𝑝 + ∇ ∙ (𝜇(∇𝐔 + (∇𝐔)T)) + 𝒇𝜸. (2.7) 

There are various surface tension models for the phase-field methods, 

 
𝒇𝜎1 = 𝜖

2∇ ∙ (|∇𝜙|2𝐈 − ∇𝜙 ⊗ ∇𝜙 ), 𝒇𝜎2 = 𝜂∇𝜙, 

 
(2.8 a, b, 

c, d, e) 
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𝒇𝜎3 = −𝜙∇𝜂, 𝒇𝜎4 = 𝜖
2∇ ∙ (

∇𝜙

|∇𝜙|
) |∇𝜙|∇𝜙, 

 

𝒇𝜎5 = 𝜖
2∇ ∙ (∇𝜙 ⨂ ∇𝜙 ). 

We use the 𝒇𝜎2 due to the computational ease. Different surface tension forces are 

used time to time to cover different physical aspects of the models [35]. 

In (2.7), 𝜌 and 𝜇 can be defined as both function of phase field 𝜙 or concentration 𝑐. 

The reason behind this is that there are two ways to describe incompressible flow of 

immiscible binary fluids existence numerically. It’s either difference [36] or the 

fraction of one of the concentrations [35], 

 𝜙 =
𝑚1 −𝑚2

𝑚1 +𝑚2
, 𝑐 =

𝑚2

𝑚1 +𝑚2
. (2.9 a, b) 

Here 𝑚1 and 𝑚2 are the mass of the fluids. We again note that −1 < 𝜙 < 1 < 1 and 

0< 𝑐 < 1. The values on the left extreme denote pure droplets while the value on the 

right extreme denotes the ambient fluid. A representative phase-field transition from 

droplet to ambient is shown in Fig. 2.2. 

 

Figure 2.2: 𝜙 concentration field varies from -1 to 1. There happens a sharp 

transition to this phase change within a distance 𝜖. 
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Depending on the approach to concentrations, equations adapt to them. Let’s assume 

𝜌𝑑 and 𝜌𝑎 are the density contrast [30, 35] defined as, 

 𝜌(𝑐) = 𝜌𝑑𝑐 + 𝜌𝑎(1 − 𝑐), 𝜌(𝜙) = 𝜌𝑑 (
1 + 𝜙

2
) + 𝜌𝑎 (

1 − 𝜙

2
). 

(2.10 a, 

b) 

Similarly 𝜇𝑑 and 𝜇𝑎 are the viscosity contrast, 

 𝜇(𝑐) = 𝜇𝑑𝑐 + 𝜇𝑎(1 − 𝑐), 𝜇(𝜙) = 𝜇𝑑 (
1 + 𝜙

2
) + 𝜇𝑎 (

1 − 𝜙

2
). 

(2.11 a, 

b) 

In this study, we use the phase-field 𝜙, but we give place to both of the equations in 

following. 

The variation of the phase-field is governed by the Cahn-Hilliard equations and given 

as 

 
D𝜙

D𝑡
= 𝑀∇2𝜂 (2.12) 

where 𝜂 is the chemical potential defined as the variational derivative of the well-

known functional of Ginzburg–Landau free energy [37] 

 𝑓 = 𝛽Ψ(𝜙) + 
𝛼

2
|∇𝜙|2 (2.13) 

with respect to phase field. It is defined as  

 𝜂 = 𝛽Ψ̇(𝜙) + 𝛼∇2𝜙. (2.14) 

In (2.12), 𝑀 is the phase field dependent non-negative mobility and can also depend  

on both concentrations or phase-field as  

 𝑀(𝑐) = 𝑐(1 − 𝑐), 𝑀(𝜙) = 1 − 𝜙2, M = 1. 
(2.15 a, 

b, c) 
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When mobility varies, the Cahn-Hilliard dynamics is influenced by diffusion at the 

interface and when mobility is constant, it is influenced by bulk diffusion. 

Following equation is the binary fluid assumption that have a specific Helmholtz free 

energy (also known as double-well in the bulk potential) which is based on the work 

of Cahn & Hilliard [33]. It’s change in the interface given in Figure 2.3. 

 

 

 
Ψ(c) =

1

4
𝑐2(1 − 𝑐2), Ψ(𝜙) =

1

4
(𝜙2 − 1)2. 

(2.16 a, 

b) 

 

Figure 2.3: Double well potential. 

 

2.1 Interpolation of Density and Viscosity 

Equation (2.10 b) and (2.11 b) are derived from the linear interpolation across the 

interface, but in the harmonic interpolation the variable density and viscosity is used 

differently. In the harmonic equation used by Joseph & Renardy (1993) [38], the 

interpolation is defined as 
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1

𝜌(𝜙)
=
1 + 𝜙

2𝜌𝑑
+
1 − 𝜙

2𝜌𝑎
, (2.17) 

 
1

𝜇(𝜙)
=
1 + 𝜙

2𝜇𝑑
+
1 − 𝜙

2𝜇𝑎
. (2.18) 

The harmonic interpolation is preferred because the solution of the Cahn-Hilliard 

equation does not abide by the maximal principle [35]. Linear interpolation may not 

prevent the solution from approaching zero. However, the harmonic interpolation 

guarantees that the solution remains bounded away from zero due to its L∞ -bound 

property [39]. 

The phase field transition from droplet to outside fluid is from 1 to -1 and the transition 

during the numerical integration does not guarantee that 𝜙 remains always above −1. 

In this case, the linear interpolation of density results with negative values which is 

not physical; this may end up with diverging solutions. One of the interpolation 

techniques to alter this problem is the use of harmonic interpolation as shown in Figure 

2.2. The implementation of this interpolation is difficult though in the finite element 

method. To ease the implementation as well as providing positivity preserving scheme, 

we propose a new interpolation for both density and viscosity. We call it quadratic 

interpolation and define as 

 𝜌(𝜙) =
𝜙2(𝜌𝑑 + 𝜌𝑎)

4
+
𝜙(𝜌𝑑 − 𝜌𝑎)

2
+
(𝜌𝑑 + 𝜌𝑎)

4
, (2.19) 

 𝜇(𝜙) =
𝜙2(𝜇𝑑 + 𝜇𝑎)

4
+
𝜙(𝜇𝑑 + 𝜇𝑎)

2
+
(𝜇𝑑 + 𝜇𝑎)

4
. (2.20) 

We show this interpolation in Figure 2.4 with solid line. Our proposal is between linear 

and harmonic represented as linear line, it is also positive at all times. Dashed and dot-

dash lines represent linear and harmonic interpolations of density, respectively. 
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Figure 2.4 A representative density variation with different density interpolations 

for 𝜌𝑑 = 1.2, 𝜌𝑎= 0.1, --: linear, -.-: harmonic, -: quadratic interpolations.  

 

Equations (2.19) and (2.20) also provide us with the use of lower density contrast 

which is not computationally simple to achieve with linear interpolation. 

Another approach is the use of Boussinesq approximation [40], which only considers 

the effect of the density difference between the liquid and gas phases on the body force 

term of the Navier-Stokes equations and ignores it in the inertia term. The linear 

momentum balance can then be written as 

 𝜌𝑜
D𝐔

D𝑡
= −∇𝑝 + ∇ ∙ (𝜇(∇𝐔 + (∇𝐔)T)) + 𝜂∇𝜙 +

1 + 𝜙

2
∆𝜌𝐠.  (2.21) 

The term  𝜌𝑜 = (𝜌𝑑 + 𝜌𝑎)/2 represents the average density and if this term is modified 

by including the density difference as an additional body force term, it will account for 

the equivalent gravitational effect caused by the density difference. This technique is 

simple to implement as it does not add extra non-linearity to the inertial terms. 
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0
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2.2 Finalized System of Equations 

We, now, write the governing equations in component and open form, but in 

axisymmetric system. The 𝑟 and 𝑧 momentum after the use of continuity equation turn 

in to a form less known in the literature as 

 

𝜌∗ (
𝜕𝑢∗

𝜕𝑡∗
+ 𝑢∗

𝜕𝑢∗

𝜕𝑟∗
+ 𝑤∗

𝜕𝑢∗

𝜕𝑧∗
) = −

𝜕𝑝∗

𝜕𝑟∗
+
1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗2𝜇∗

𝜕𝑢∗

𝜕𝑟∗
) 

+
𝜕

𝜕𝑧∗
(𝜇∗ (

𝜕𝑢∗

𝜕𝑧∗
+
𝜕𝑤∗

𝜕𝑟∗
)) − 2

𝜇∗𝑢∗

𝑟∗2
+ 𝜂∗

𝜕𝜙

𝜕𝑟∗
, 

(2.22) 

 

 

𝜌∗ (
𝜕𝑤∗

𝜕𝑡∗
+ 𝑢∗

𝜕𝑤∗

𝜕𝑟∗
+ 𝑤∗

𝜕𝑤∗

𝜕𝑧∗
) = −

𝜕𝑝∗

𝜕𝑧∗
 

+
1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗𝜇∗ (

𝜕𝑢∗

𝜕𝑧∗
+
𝜕𝑤∗

𝜕𝑟∗
)) +

𝜕

𝜕𝑧∗
(2𝜇∗

𝜕𝑤∗

𝜕𝑧∗
) + 𝜂∗

𝜕𝜙

𝜕𝑧∗
. 

(2.23) 

The continuity is defined by 

 𝜕(𝑟∗𝑢)

𝜕𝑟∗
+
𝜕𝑤∗

𝜕𝑧∗
= 0, 

(2.24) 

and the Cahn-Hillard and chemical potential equations are 

 
𝜕𝜙

𝜕𝑡∗
+ 𝑢∗

𝜕𝜙

𝜕𝑟∗
+ 𝑤∗

𝜕𝜙

𝜕𝑧∗
= 𝑀(

1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗

𝜕𝜂∗

𝜕𝑧∗
) +

𝜕2𝜂∗

𝜕𝑧∗2
), (2.25) 

 𝜂∗ = 𝛽(−𝜙 + 𝜙3) − 𝛼 (
1

𝑟∗
𝜕

𝜕𝑟∗
(𝑟∗

𝜕𝜙

𝜕𝑧∗
) +

𝜕2𝜙

𝜕𝑧∗2
). (2.26) 
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To non-dimensionalize our model problem, we use the following scales:  

 

𝑟∗ = 𝐷𝑟, 𝑧∗ = 𝐷𝑧, 𝑢∗ = 𝑈𝑢, 𝑤∗ = 𝑈𝑤, 𝑡∗ =
𝐷

𝑈
𝑡, 

𝑝∗ =
𝜇𝑑𝑈

𝐷
𝑝, 𝜂∗ =

𝜎

𝜖
𝜂, 𝜌∗ = 𝜌𝑑𝜆1, 𝜇∗ = 𝜇𝑑𝜆2, 

𝛽~
𝜎

𝜖
, 𝛼~𝜎𝜖. 

 

 

(2.27 a, b, 

c, d, e, f, 

g, h, i, j, k) 

After non-dimensionalization, we rewrite the governing equations in their non-

dimensional forms: 

 

𝜆1𝑅𝑒 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑟
+
1

𝑟

𝜕

𝜕𝑟
(𝑟2𝜆2

𝜕𝑢

𝜕𝑟
) 

+
𝜕

𝜕𝑧
(𝜆2 (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
)) −

2𝜆2𝑢

𝑟2
+

1

𝐶𝑛𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑟
, 

(2.28) 

 

 

𝜆1𝑅𝑒 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = −

𝜕𝑝

𝜕𝑧
+
1

𝑟

𝜕

𝜕𝑟
(𝑟𝜆2 (

𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
)) 

+
𝜕

𝜕𝑧
(2𝜆2

𝜕𝑤

𝜕𝑧
) +

1

𝐶𝑛𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑧
, 

(2.29) 

 

 
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
+
𝜕𝑤

𝜕𝑧
= 0, (2.30) 

 
𝜕𝜙

𝜕𝑡
+ 𝑢

𝜕𝜙

𝜕𝑟
+ 𝑤

𝜕𝜙

𝜕𝑧
=
1

𝑃𝑒
(
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜂

𝜕𝑟
) +

𝜕2𝜂

𝜕𝑧2
), (2.31) 

 𝜂 = −𝜙 + 𝜙3 − 𝐶𝑛2 (
1

𝑟

𝜕

𝜕𝑟
(𝑟
𝜕𝜙

𝜕𝑟
) +

𝜕2𝜙

𝜕𝑧2
). (2.32) 
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The non-dimensional and linearly interpolated density and viscosity contrasts in (2.28) 

and (2.29) are 

𝜆1 =
1 + 𝜙 + 𝜌(1 − 𝜙)

2
, (2.33) 

𝜆2 =
1 + 𝜙 + 𝜇(1 − 𝜙)

2
. (2.34) 

The dimensionless groups appearing in the non-dimensional equations are 

𝑅𝑒 =
𝜌𝑑𝑈𝐷

𝜇𝑑
, 𝐶𝑛 =

𝜖

𝐷
, 𝐶𝑎 =

𝜇𝑑𝑈

𝜎
=
𝑊𝑒

𝑅𝑒
, 

 

  𝑊𝑒 =
𝜌𝑑𝑈

2𝐷

𝜎
, 𝑃𝑒 =

𝑈𝜖𝐷

𝑀𝜎
, 𝜌 =

𝜌𝑎
𝜌𝑑
, 𝜇 =

𝜇𝑎
𝜇𝑑
. 

 

(2.35 a, b, 

c, d, e, f, 

g) 

𝑅𝑒 is the Reynolds number that relates the inertial forces in a fluid flow to the viscous 

forces. 𝐶𝑛 is Cahn number that relates ratio of the diffuse interface width to the 

characteristic length scale. 𝐶𝑎 is Capillary number that relates the viscous forces in a 

fluid to the surface tension forces. 𝑊𝑒 is the Weber number defined as the ratio of 

inertial forces to surface tension forces. 𝑃𝑒 is the Peclet number and it means advection 

to the rate of diffusion. The 𝜌 and 𝜇 are the ratio of density and viscosity of ambient 

fluid to droplet respectively. 

We, now, move to the next chapter in which we explain the numerical technique to 

integrate the model problem. 
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Chapter 3 

Numerical Method 

We integrate our model equations using Finite Element Method with quadratic 

unstructured triangular elements. We first obtain our weak formulation. To do so we 

multiply the set of equations with a weight function and integrate over the domain Ω 

where the coordinates satisfy 0 ≤ 𝑟 ≤ 2.5, 0 ≤ 𝑧 ≤ 2.5 and weaken the 

differentiability requirement. The test functions and approximations of the solution 

variables are picked from the same Hilbert-Sobolov Ԋ1(Ω) space as requirement of 

the Galerkin approximation technique.  

The unknown solution variables are 𝑢,𝑤, 𝑝, 𝜙, 𝜆1 and 𝜆2. The weights we multiply 𝑟 −

 momentum, 𝑧 − momentum, continuity, Cahn-Hilliard and chemical potential 

equations are �̅�, �̅�, �̅�, �̅�, �̅� respectively. Below we give the corresponding integral 

equations. 

Before jumping into algebra, equations (2.28) and (2.29) can be written as 

 

𝜆1𝑅𝑒
𝜕𝑢

𝜕𝑡
+ 𝜆1𝑅𝑒 𝑢

𝜕𝑢

𝜕𝑟
+ 𝜆1𝑅𝑒 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑟
+
2𝜆2
𝑟

𝜕𝑢

𝜕𝑟
 

+2
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
+ 2𝜇

𝜕2𝑢

𝜕𝑟2
+
𝜕𝜆2
𝜕𝑧

𝜕𝑢

𝜕𝑧
+ 𝜇

𝜕2𝑢

𝜕𝑧2
+
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
 

+𝜆2
𝜕2𝑤

𝜕𝑧𝜕𝑟
−
2𝜆2𝑢

𝑟2
+

1

𝐶𝑛 𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑟
, 

(3.1) 
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𝜆1𝑅𝑒
𝜕𝑤

𝜕𝑡
+ 𝜆1𝑅𝑒 𝑢

𝜕𝑤

𝜕𝑟
+ 𝜆1𝑅𝑒 𝑤

𝜕𝑤

𝜕𝑧
= −

𝜕𝑝

𝜕𝑟
+
𝜆2
𝑟

𝜕𝑢

𝜕𝑧
 

+
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑧
+ 𝜇

𝜕2𝑢

𝜕𝑟𝜕𝑧
+
𝜆2
𝑟

𝜕𝑤

𝜕𝑟
 

+
𝜕𝜆2
𝜕𝑟

𝜕𝑤

𝜕𝑟
+ 𝜆2

𝜕2𝑤

𝜕𝑟2
+ 2

𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑧
+ 2𝜆2

𝜕2𝑤

𝜕𝑧2
+

1

𝐶𝑛 𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑧
. 

(3.2) 

 

The equations (3.1) and (3.2) still need an approach to ease for weakening process. 

The terms with prefactor two are separated one by one then regrouped with other 

similar terms too appear as clusters shown below, first, for equation (3.1) 

 

𝜆1𝑅𝑒
𝜕𝑢

𝜕𝑡
+ 𝜆1𝑅𝑒 𝑢

𝜕𝑢

𝜕𝑟
+ 𝜆1𝑅𝑒 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑟
 

+𝜆2 (
𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
+
𝜕2𝑢

𝜕𝑧2
) + 𝜆2 (

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−
𝑢

𝑟2
+
𝜕𝑤

𝜕𝑧𝜕𝑟
) 

+2
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
+
𝜕𝜆2
𝜕𝑧

𝜕𝑢

𝜕𝑧
+
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
−
𝜆2𝑢

𝑟2
+

1

𝐶𝑛 𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑟
, 

(3.3) 

 

 

𝜆1𝑅𝑒
𝜕𝑢

𝜕𝑡
+ 𝜆1𝑅𝑒 𝑢

𝜕𝑢

𝜕𝑟
+ 𝜆1𝑅𝑒 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑟
 

+𝜆2∇
2𝐮 + 𝜆2 (

𝜕

𝜕𝑟
(
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
+
𝜕𝑤

𝜕𝑧
)) 

+2
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
+
𝜕𝜆2
𝜕𝑧

𝜕𝑢

𝜕𝑧
+
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
−
𝜆2𝑢

𝑟2
+

1

𝐶𝑛 𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑟
, 

(3.4) 
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𝜆1𝑅𝑒
𝜕𝑢

𝜕𝑡
+ 𝜆1𝑅𝑒 𝑢

𝜕𝑢

𝜕𝑟
+ 𝜆1𝑅𝑒 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑟
 

+𝜆2∇
2𝐮 + 𝜆2∇( ∇ ∙ 𝐮) 

+2
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
+
𝜕𝜆2
𝜕𝑧

𝜕𝑢

𝜕𝑧
+
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
−
𝜆2𝑢

𝑟2
+

1

𝐶𝑛 𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑟
. 

(3.5) 

We knew that ∇ ∙ 𝐮 = 0, then 

 
𝜆1𝑅𝑒

𝜕𝑢

𝜕𝑡
+ 𝜆1𝑅𝑒 𝑢

𝜕𝑢

𝜕𝑟
+ 𝜆1𝑅𝑒 𝑤

𝜕𝑢

𝜕𝑧
= −

𝜕𝑝

𝜕𝑟
 

+𝜆2∇
2𝐮 −

𝜆2𝑢

𝑟2
+ 2

𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
+
𝜕𝜆2
𝜕𝑧

𝜕𝑢

𝜕𝑧
+
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
+

1

𝐶𝑛 𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑟
. 

(3.6) 

We follow the same steps for equation (3.2) and this results with 

 
𝜆1𝑅𝑒

𝜕𝑤

𝜕𝑡
+ 𝜆1𝑅𝑒 𝑢

𝜕𝑤

𝜕𝑟
+ 𝜆1𝑅𝑒 𝑤

𝜕𝑤

𝜕𝑧
= −

𝜕𝑝

𝜕𝑟
 

+𝜆2∇
2𝐰+

𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑧
+
𝜕𝜆2
𝜕𝑟

𝜕𝑤

𝜕𝑟
+ 2

𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑧
+

1

𝐶𝑛 𝐶𝑎
𝜂
𝜕𝜙

𝜕𝑧
. 

(3.7) 

Last two governing equations are regrouped for same purpose and (2.30), (2.31) and 

(2.32) are, 

 
𝜕𝑢

𝜕𝑟
+
𝑢

𝑟
+
𝜕𝑤

𝜕𝑧
= 0, (3.8) 

 
𝜕𝜙

𝜕𝑡
+ 𝑢

𝜕𝜙

𝜕𝑟
+ 𝑤

𝜕𝜙

𝜕𝑧
=
1

𝑃𝑒
∇2𝜂, (3.9) 

 𝜂 = −𝜙 + 𝜙3 − 𝐶𝑛2∇2𝜙. (3.10) 

Now the set of equations (3.6), (3.7), (3.8), (3.9) and (3.10) are multiplied with 

corresponding test functions and integrated over the domain as 
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𝜆1𝑅𝑒∫
𝜕𝑢

𝜕𝑡
�̅� dΩ

Ω

+ 𝜆1𝑅𝑒∫ 𝑢
𝜕𝑢

𝜕𝑟
�̅� dΩ

Ω

+ 𝜆1𝑅𝑒∫ 𝑤
𝜕𝑢

𝜕𝑧
�̅� dΩ

Ω

= 

−∫
𝜕𝑝

𝜕𝑟
�̅� dΩ

Ω

+∫𝜆2∇
2𝐮�̅� dΩ

Ω

+ 2∫
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
�̅� dΩ

Ω

 

+∫
𝜕𝜆2
𝜕𝑧

𝜕𝑢

𝜕𝑧
�̅� dΩ

Ω

+∫
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
�̅� dΩ

Ω

−∫
𝜆2𝑢

𝑟2
�̅� dΩ

Ω

 

+
1

𝐶𝑛 𝐶𝑎
∫ 𝜂

𝜕𝜙

𝜕𝑟
�̅� dΩ,

Ω

 

(3.11) 

 

 

𝜆1𝑅𝑒∫
𝜕𝑤

𝜕𝑡
�̅� dΩ

Ω

+ 𝜆1𝑅𝑒 ∫ 𝑢
𝜕𝑤

𝜕𝑟
�̅� dΩ

Ω

+ 𝜆1𝑅𝑒 ∫ 𝑤
𝜕𝑤

𝜕𝑧Ω

�̅� dΩ = 

−∫
𝜕𝑝

𝜕𝑟
�̅� dΩ

Ω

+∫𝜆2∇
2𝐰�̅� dΩ

Ω

+∫
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑧
�̅� dΩ

Ω

 

+∫
𝜕𝜆2
𝜕𝑟

𝜕𝑤

𝜕𝑟Ω

�̅� dΩ + 2∫
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑧
�̅� dΩ

Ω

+
1

𝐶𝑛 𝐶𝑎
∫ 𝜂

𝜕𝜙

𝜕𝑧Ω

�̅� dΩ, 

(3.12) 

 

 ∫
𝜕𝑢

𝜕𝑟Ω

�̅� dΩ + ∫
𝑢

𝑟Ω
�̅� dΩ + ∫

𝜕𝑤

𝜕𝑧Ω

�̅� dΩ = 0, (3.13) 

 ∫
𝜕𝜙

𝜕𝑡Ω

�̅� dΩ + ∫ 𝑢
𝜕𝜙

𝜕𝑟
�̅� dΩ

Ω

+∫ 𝑤
𝜕𝜙

𝜕𝑧
�̅� dΩ

Ω

=
1

𝑃𝑒
∫∇2𝜂
Ω

�̅� dΩ, (3.14) 

 ∫𝜂�̅� dΩ
Ω

= −∫𝜙
Ω

�̅� dΩ + ∫𝜙3�̅� dΩ
Ω

− 𝐶𝑛2∫∇2𝜙�̅� dΩ
Ω

. (3.15) 

To weaken the differentiability requirements, we modify the equations by taking the 

weight functions into the second order derivatives and subtracting the extra terms. We, 

then, perform integrations, if possible, to convert the area integrals to line integrals 

using divergence theorem and pick the weight functions to be zero at any Dirichlet 

boundary condition. Also, unknowns are separated from the rest of the terms.  We 

rewrite (3.11) as 
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𝑅𝑒∫ 𝜆1
𝜕𝑢

𝜕𝑡
�̅� dΩ

Ω

+ 𝑅𝑒∫ 𝜆1𝑢
𝜕𝑢

𝜕𝑟
�̅� dΩ

Ω

+ 𝑅𝑒∫ 𝜆1𝑤
𝜕𝑢

𝜕𝑧
�̅� dΩ =

Ω

 

−∫
𝜕𝑝

𝜕𝑟
�̅� dΩ

Ω

+∫∇(𝜆2∇𝐮�̅�) dΩ
Ω

 

−∫∇𝜆2 ∙ ∇𝐮�̅� dΩ
Ω

−∫𝜆2∇𝐮 ∙ ∇�̅� dΩ
Ω

 

+2∫
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
�̅� dΩ

Ω

+∫
𝜕𝜆2
𝜕𝑧

𝜕𝑢

𝜕𝑧
�̅� dΩ

Ω

+∫
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
�̅� dΩ

Ω

 

−∫
𝜆2𝑢

𝑟2
�̅� dΩ

Ω

+
1

𝐶𝑛 𝐶𝑎
∫ 𝜂

𝜕𝜙

𝜕𝑟
�̅� dΩ,

Ω

 

(3.16) 

 

 

𝑅𝑒∫ 𝜆1
𝜕𝑢

𝜕𝑡
�̅� dΩ

Ω

+ 𝑅𝑒∫ 𝜆1𝑢
𝜕𝑢

𝜕𝑟
�̅� dΩ

Ω

+ 𝑅𝑒∫ 𝜆1𝑤
𝜕𝑢

𝜕𝑧
�̅� dΩ =

Ω

 

−∫
𝜕𝑝

𝜕𝑟
�̅� dΩ

Ω

−∫ 𝜆2
𝜕𝑢

𝜕𝑟

𝜕�̅�

𝜕𝑟
 dΩ

Ω

−∫ 𝜆2
𝜕𝑢

𝜕𝑧

𝜕�̅�

𝜕𝑟
 dΩ

Ω

−∫
𝜆2𝑢

𝑟2
�̅� dΩ

Ω

 

+∫
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑟
�̅� dΩ

Ω

+∫
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑟
�̅� dΩ

Ω

+
1

𝐶𝑛 𝐶𝑎
∫ 𝜂

𝜕𝜙

𝜕𝑟
�̅� dΩ.

Ω

 

(3.17) 

and (3.12) as 

 

𝑅𝑒∫ 𝜆1
𝜕𝑤

𝜕𝑡
�̅� dΩ

Ω

+ 𝑅𝑒∫ 𝜆1𝑢
𝜕𝑤

𝜕𝑟
�̅� dΩ

Ω

+ 𝑅𝑒 ∫ 𝜆1𝑤
𝜕𝑤

𝜕𝑧Ω

�̅� dΩ = 

−∫
𝜕𝑝

𝜕𝑟
�̅�dΩ

Ω

+∫∇(𝜆2∇𝐰�̅�)dΩ
Ω

−∫∇𝜆2 ∙ ∇𝐰�̅�dΩ
Ω

 

−∫𝜆2∇𝐰 ∙ ∇�̅�dΩ
Ω

+∫
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑧
�̅� dΩ

Ω

+∫
𝜕𝜆2
𝜕𝑟

𝜕𝑤

𝜕𝑟Ω

�̅�dΩ 

+2∫
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑧
�̅� dΩ

Ω

+
1

𝐶𝑛 𝐶𝑎
∫ 𝜂

𝜕𝜙

𝜕𝑧Ω

�̅�dΩ, 

(3.18) 
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𝑅𝑒∫ 𝜆1
𝜕𝑤

𝜕𝑡
�̅� dΩ

Ω

+ 𝑅𝑒∫ 𝜆1𝑢
𝜕𝑤

𝜕𝑟
�̅� dΩ

Ω

+ 𝑅𝑒 ∫ 𝜆1𝑤
𝜕𝑤

𝜕𝑧Ω

�̅�dΩ = 

−∫
𝜕𝑝

𝜕𝑟
�̅� dΩ

Ω

−∫ 𝜆2
𝜕𝑤

𝜕𝑟

𝜕�̅�

𝜕𝑟
 dΩ

Ω

−∫ 𝜆2
𝜕𝑤

𝜕𝑧

𝜕�̅�

𝜕𝑧
dΩ

Ω

 

+∫
𝜕𝜆2
𝜕𝑧

𝜕𝑤

𝜕𝑧
�̅� dΩ

Ω

+∫
𝜕𝜆2
𝜕𝑟

𝜕𝑢

𝜕𝑧
�̅� dΩ

Ω

+
1

𝐶𝑛 𝐶𝑎
∫ 𝜂

𝜕𝜙

𝜕𝑧Ω

�̅� dΩ. 

(3.19) 

Continuity does not change, the Cahn-Hilliard becomes 

 

∫
𝜕𝜙

𝜕𝑡Ω

�̅� dΩ + ∫ 𝑢
𝜕𝜙

𝜕𝑟
�̅� dΩ

Ω

+∫ 𝑤
𝜕𝜙

𝜕𝑧
�̅� dΩ

Ω

= 

1

𝑃𝑒
∫∇(∇𝜂�̅�)
Ω

 dΩ −
1

𝑃𝑒
∫∇𝜂∇�̅�
Ω

 dΩ, 

(3.20) 

 

 

∫
𝜕𝜙

𝜕𝑡Ω

�̅� dΩ + ∫ 𝑢
𝜕𝜙

𝜕𝑟
�̅� dΩ

Ω

+∫ 𝑤
𝜕𝜙

𝜕𝑧
�̅� dΩ

Ω

= 

1

𝑃𝑒
∫
𝜕𝜂

𝜕𝑟

𝜕�̅�

𝜕𝑟Ω

 dΩ −
1

𝑃𝑒
∫
𝜕𝜂

𝜕𝑧

𝜕�̅�

𝜕𝑧Ω

 dΩ 

(3.21) 

and the chemical potential is written as, 

 

∫𝜂�̅� dΩ
Ω

= −∫𝜙
Ω

�̅� dΩ + ∫𝜙3�̅� dΩ
Ω

 

−𝐶𝑛2∫∇(∇𝜙�̅�)
Ω

 dΩ + 𝐶𝑛2∫∇𝜙∇�̅�
Ω

 dΩ. 

(3.22) 

The volume integral, third term in (3.22) right hand side, is converted into surface 

integral with the use of divergence theorem which is the only non-zero surface integral 

with which we apply the wetting boundary condition. We rewrite (3.22) as 

 ∫𝜂�̅� dΩ
Ω

= −∫𝜙
Ω

�̅� dΩ + ∫𝜙3�̅� dΩ
Ω

 (3.23) 
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+𝐶𝑛2∫
𝜕𝜙

𝜕𝑟

𝜕�̅�

𝜕𝑟Ω

 dΩ + 𝐶𝑛2∫
𝜕𝜙

𝜕𝑧

𝜕�̅�

𝜕𝑧Ω

 dΩ 

−𝐶𝑛2∮ (𝑛 ∙ ∇𝜙)�̅� d𝜕Ω𝑏
𝜕Ω𝑏

. 

Because the model problem is axisymmetric, we perform the azimuthal integration 

analytically as there is no dependence on 𝜃. In this case, we define the differential 

domain as 𝑑Ω = 2𝜋𝑟 𝑑𝑟𝑑𝑧. As 2𝜋 appears everywhere, we cancel it and rewrite the 

final form of the governing set of equations.  

We first map the physical finite elements to a master element in r − s domain and 

perform all the integrations in this domain.  

3.1 Space and Time Discretizations 

For the finite element solution of the equations, the domain and the solution variables 

are discretized using 𝑃2 − 𝑃1 triangular elements. A representative domain we studied 

on given in Figure 3.1. The values of velocities, phase field and chemical potential are 

represented by the nodal points one to six, and are interpolated using quadratic 

polynomials. Likewise, the pressure is determined by the three corner nodal values one 

to three and is interpolated using a linear polynomial. 

The two-dimensional cylindrical coordinate system (with the advantage of it one can 

say semi-three-dimensional coordinate system) is transformed into natural coordinates 

within the Gauss quadrature rule.  
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Figure 3.1: Master element and nodal points in the isoperimetric plane. 

 

For the quadratic velocity components, 𝜙 and 𝜂, we use the following six interpolation 

functions 

 

𝜑1
𝑞(𝑟′, 𝑠′) = 1 − 3𝑟′ − 3𝑠′ + 2𝑟′2 + 4𝑟′𝑠′ + 2𝑠′2, 

𝜑2
𝑞(𝑟′, 𝑠′) = −𝑟′ + 2𝑟′2, 

𝜑3
𝑞(𝑟′, 𝑠′) = −𝑠′ + 2𝑠′2, 

𝜑4
𝑞(𝑟′, 𝑠′) = 4𝑟′ − 4𝑟′2 − 4𝑟′𝑠′, 

𝜑5
𝑞(𝑟′, 𝑠′) = 4𝑟′𝑠′, 

𝜑6
𝑞(𝑟′, 𝑠′) = 4𝑠′ − 4𝑟′𝑠′ − 4𝑠′2. 

(3.24 a, 

b, c, d, e, 

f) 

and for the pressure, the three following linear interpolation functions are used 

 

𝜑1
𝑙(𝑟′, 𝑠′) = 1 − 𝑟′ − 𝑠′, 
𝜑2

𝑙(𝑟′, 𝑠′) = 𝑟′, 
𝜑3

𝑙(𝑟′, 𝑠′) = 𝑠′. 

(3.25 a, b, 

c) 

 

These functions are defined as piecewise continuous polynomials over sub elements. 

Derivatives with respect to 𝑟 and 𝑠 are also needed for the solver. 
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To map 𝑟 − 𝑧 domain to 𝑟′ − 𝑠′ domain, we approximate the 𝑟 − 𝑧 coordinates using 

quadratic shape functions:  

 𝑟(𝑟′, 𝑠′) = ∑𝑟𝑖𝜑𝑖
𝑞 ,

6

𝑖=1

 (3.26) 

 
𝑧(𝑟′, 𝑠′) =∑𝑧𝑖𝜑𝑖

𝑞

6

𝑖=1

. 

 

(3.27) 

In (3.26) and (3.27), 𝑟𝑖 and 𝑧𝑖 are the coordinates of the nodal points in the physical 

domain. To perform integration in the 𝑟′ − 𝑠′ domain, we need to express the mapping 

of derivatives from the 𝑟 − 𝑧 plane to the isoperimetric plane using the Jacobian 

provided by  

 
𝐽 = [

𝜕𝑟

𝜕𝑟′
 
𝜕𝑧

𝜕𝑟′
𝜕𝑟

𝜕𝑠′

𝜕𝑧

𝜕𝑠′

]. 

 

(3.28) 

Using (3.28), the derivative operators can be represented as 

 
[

𝜕

𝜕𝑟
𝜕

𝜕𝑧

] = 𝐽−1 [

𝜕

𝜕𝑟′
𝜕

𝜕𝑠′

]. 

 

(3.29) 

We use Gauss quadrature to compute the integrals which are calculated over triangles 

by applying the 7-point Gauss integration rule. In theory, evaluating the matrices 

accurately is only possible when a high enough order is used, otherwise, the problem 

solution may not be possible. The highest order (𝑝) polynomial in the integrations is 

four so minimum number of Gauss Points should be calculated from equation of 𝑝 =

2𝑛 − 1 where n is number of Gauss Points, therefore the integrations are exact 

throughout the numerical method. Because as shown in equation, required number of 

Gauss Points is three and we use seven. 

We need to solve a linear system for each time step and implicit method is generally 

stable and we can use higher Δ𝑡’s which is computationally cheaper. The unsteady 
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term is easily approximated by applying a first order backward differentiation formula 

(BDF) scheme  

 
𝜕𝑓

𝜕𝑡
=
𝑓𝑛+1 − 𝑓𝑛

Δ𝑡
. (3.30) 

For better numerical treatment, we open the term 𝜆1 that multiplies with 𝑢𝑡 and 𝑤𝑡. 

After putting this into system of equations (3.17), (3.19), (3.20), (3.21) and (3.23) 

become 

 

𝑅𝑒∫𝜆1
𝑛+1𝑢𝑛+1�̅�𝑑Ω + Δ𝑡𝑅𝑒

Ω

∫ 𝜆1
𝑛+1𝑢𝑛+1

𝜕𝑢𝑛+1

𝜕𝑟
�̅�𝑑Ω

Ω

 

+Δ𝑡𝑅𝑒∫ 𝜆1
𝑛+1𝑤𝑛+1

𝜕𝑢𝑛+1

𝜕𝑧
�̅�𝑑Ω =

Ω

− Δ𝑡∫
𝜕𝑝𝑛+1

𝜕𝑟
�̅�𝑑Ω 

Ω

 

−Δ𝑡∫ 𝜆2
𝑛+1

𝜕𝑢𝑛+1

𝜕𝑟

𝜕�̅�

𝜕𝑟
𝑑Ω − Δ𝑡

Ω

∫ 𝜆2
𝑛+1

𝜕𝑢𝑛+1

𝜕𝑧

𝜕�̅�

𝜕𝑧
𝑑Ω

Ω

 

−Δ𝑡∫
𝜆2
𝑛+1𝑢𝑛+1�̅�

𝜕𝑟2
𝑑Ω + Δ𝑡

Ω

∫
𝜕𝜆2

𝑛+1

𝜕𝑟

𝜕𝑢𝑛+1

𝜕𝑟
�̅�𝑑Ω

Ω

 

+Δ𝑡∫
𝜕𝜆2

𝑛+1

𝜕𝑧

𝜕𝑢𝑛+1

𝜕𝑟
�̅�𝑑Ω +

Δ𝑡

𝐶𝑛 𝐶𝑎Ω

∫ 𝜂𝑛+1
𝜕𝜙𝑛+1

𝜕𝑟
�̅�𝑑Ω

Ω

 

+
𝑅𝑒(1 − 𝜌)

2
∫ 𝜙𝑛+1𝑢𝑛�̅�𝑑Ω +

𝑅𝑒(1 + 𝜌)

2Ω

∫𝑢𝑛�̅�𝑑Ω
Ω

 

(3.31) 

 

 

𝑅𝑒∫𝜆1
𝑛+1𝑤𝑛+1�̅�𝑑Ω + Δ𝑡𝑅𝑒

Ω

∫ 𝜆1
𝑛+1𝑢𝑛+1

𝜕𝑤𝑛+1

𝜕𝑟
�̅�𝑑Ω

Ω

 

+Δ𝑡𝑅𝑒∫ 𝜆1
𝑛+1𝑤𝑛+1

𝜕𝑤𝑛+1

𝜕𝑧
�̅�𝑑Ω =

Ω

− Δ𝑡∫
𝜕𝑝𝑛+1

𝜕𝑧
�̅�𝑑Ω 

Ω

 

−Δ𝑡∫ 𝜆2
𝑛+1

𝜕𝑤𝑛+1

𝜕𝑟

𝜕�̅�

𝜕𝑟
𝑑Ω − Δ𝑡

Ω

∫ 𝜆2
𝑛+1

𝜕𝑤𝑛+1

𝜕𝑧

𝜕�̅�

𝜕𝑧
𝑑Ω

Ω

 

 

 

 

 

 

 

(3.32) 
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+Δ𝑡∫
𝜕𝜆2

𝑛+1

𝜕𝑧

𝜕𝑤𝑛+1

𝜕𝑧
�̅�𝑑Ω

Ω

+ Δ𝑡∫
𝜕𝜆2

𝑛+1

𝜕𝑟

𝜕𝑢𝑛+1

𝜕𝑧
�̅�𝑑Ω

Ω

 

+
Δ𝑡

𝐶𝑛 𝐶𝑎
∫ 𝜂𝑛+1

𝜕𝜙𝑛+1

𝜕𝑧
�̅�𝑑Ω +

𝑅𝑒(1 − 𝜌)

2Ω

∫𝜙𝑛+1𝑤𝑛�̅�𝑑Ω
Ω

 

+
𝑅𝑒(1 + 𝜌)

2
∫ 𝑤𝑛�̅�𝑑Ω − Δ𝑡

𝐵𝑜

𝐶𝑎Ω

∫�̅�𝑑Ω
Ω

 

 

 ∫
𝜕𝑢𝑛+1

𝜕𝑟
�̅�𝑑Ω +

Ω

∫
𝑢𝑛+1

𝑟
�̅�𝑑Ω

Ω

+∫
𝜕𝑤𝑛+1

𝜕𝑧
�̅�𝑑Ω 

Ω

= 0 (3.33) 

 

 

∫𝜙𝑛+1�̅�𝑑Ω + Δ𝑡
Ω

∫ 𝑢𝑛+1
𝜕𝜙𝑛+1

𝜕𝑟
�̅�𝑑Ω + Δ𝑡

Ω

∫ 𝑤𝑛+1
𝜕𝜙𝑛+1

𝜕𝑧
�̅�𝑑Ω

Ω

 

= −
Δ𝑡

𝑃𝑒
∫
𝜕𝜂𝑛+1

𝜕𝑟

𝜕�̅�

𝜕𝑟
𝑑Ω −

Δ𝑡

𝑃𝑒Ω

∫
𝜕𝜂𝑛+1

𝜕𝑧

𝜕�̅�

𝜕𝑧
𝑑Ω +

Ω

∫𝜙𝑛�̅�𝑑Ω
Ω

 

(3.34) 

 

 

∫𝜂𝑛+1�̅�𝑑Ω = −
Ω

∫𝜙𝑛+1�̅�𝑑Ω
Ω

∫𝜙𝑛+1
3
�̅�𝑑Ω

Ω

 

+𝐶𝑛2∫
𝜕𝜙𝑛+1

𝜕𝑟

𝜕�̅�

𝜕𝑟
𝑑Ω + 𝐶𝑛2

Ω

∫
𝜕𝜙𝑛+1

𝜕𝑧

𝜕�̅�

𝜕𝑧
𝑑Ω

Ω

 

−𝐶𝑛2∮ (𝒏 ∙ ∇𝜙) �̅�𝑑𝜕Ω𝑏
𝜕Ω𝑏

 

(3.35) 

We next define finite element space approximations of 𝑢𝑛+1, 𝑤𝑛+1, 𝑝𝑛+1, 𝜙𝑛+1,

𝜂𝑛+1, 𝜆1
𝑛+1, 𝜆2

𝑛+1, 𝑢𝑛, 𝑤𝑛, 𝜙𝑛, �̅�, �̅�, �̅�, �̅�, �̅�, �̅�1,   �̅�2. All the interpolation 

functions, except the pressure, and their weight functions are piece-wise quadratic 

while the pressure terms are linear in space defined over triangular elements in the 

isoperimetric plane.  
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𝑢𝑛+1 =∑𝑢𝑗
𝑛+1𝜑𝑗

𝑞 ,

6

𝑗=1

  𝑤𝑛+1 =∑𝑤𝑗
𝑛+1𝜑𝑗

𝑞 ,

6

𝑗=1

𝑝𝑛+1 =∑𝑝𝑗
𝑛+1𝜑𝑗

𝑙 ,

3

𝑗=1

 

𝜙𝑛+1 =∑𝜙𝑗
𝑛+1𝜑𝑗

𝑞 ,

6

𝑗=1

 𝜂𝑛+1 =∑𝜂𝑗
𝑛+1𝜑𝑗

𝑞 ,

6

𝑗=1

 𝜆1
𝑛+1 =∑𝜆1𝑗

𝑛+1𝜑𝑗
𝑞 ,

6

𝑗=1

 

𝜆2
𝑛+1 =∑𝜆2𝑗

𝑛+1𝜑𝑗
𝑞 ,

6

𝑗=1

 𝑢𝑛  = ∑𝑢𝑗
𝑛𝜑𝑗

𝑞 ,

6

𝑗=1

 𝑤𝑛 =∑𝑤𝑗
𝑛𝜑𝑗

𝑞 ,

6

𝑗=1

 

𝜙𝑛 =∑𝜙𝑗
𝑛𝜑𝑗

𝑞 ,

6

𝑗=1

 �̅� = ∑�̅�𝑖𝜑𝑖
𝑞 ,

6

𝑖=1

 �̅� = ∑�̅�𝑖𝜑𝑖
𝑞 ,

6

𝑖=1

 

�̅� =∑�̅�𝑖𝜑𝑖
𝑙 ,

3

𝑖=1

  �̅� = ∑�̅�𝑖𝜑𝑖
𝑞 ,

6

𝑖=1

 �̅� =∑�̅�𝑖𝜑𝑖
𝑞

6

𝑖=1

. 

(3.36 a, 

b, c, d, e, 

f, g, h, i, 

j, k, l, m, 

n, o) 

The 𝜑𝑗
𝑞 and 𝜑𝑗

𝑙 are quadratic and linear interpolations; 𝑢𝑗 , 𝑤𝑗, 𝑝𝑗, 𝜙𝑗 , 𝜂𝑗 , 𝜆1𝑗  and 𝜆2𝑗  

are the nodal values. We substitute them back into the equations and use the fact that, 

the weak form is valid, for all �̅�𝑖, �̅�𝑖, �̅�, �̅�𝑖and �̅�𝑖. We take the summations out of 

integrals and define the system to be solved for the unknowns. All the knowns are 

collected at the right-hand side and the unknowns to left-hand side of the equation. 

 

∑�̅�𝑖  

6

𝑖=1

[
 
 
 
 
 

𝑅𝑒∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆1𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                    
LU𝑖𝑗

 

+Δ𝑡𝑅𝑒∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆1𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)(∑𝑢𝑗
𝑛+1

6

𝑗=1

𝜕𝜑𝑗
𝑞

𝜕𝑟
)𝜑𝑗

𝑞𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                              
LKNUR𝑖𝑗

 

+Δ𝑡𝑅𝑒∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆1𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)(∑𝑢𝑗
𝑛+1

6

𝑗=1

𝜕𝜑𝑗
𝑞

𝜕𝑧
)𝜑𝑗

𝑞𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                              
LKNUZ𝑖𝑗
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+Δ𝑡∑𝑝𝑗
𝑛+1

3

𝑗=1

(∫
𝜕𝜑𝑗

𝑙

𝜕𝑟
𝜑𝑖
𝑞

Ω

𝑑Ω)
⏟          

PR𝑖𝑗

 

+Δ𝑡∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑟

𝜕𝜑𝑖
𝑞

𝜕𝑟Ω

𝑑Ω)

⏟                      
LL𝑖𝑗

 

+Δ𝑡∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑧

𝜕𝜑𝑖
𝑞

𝜕𝑧Ω

𝑑Ω)

⏟                      
LM𝑖𝑗

 

+Δ𝑡∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)
𝜑𝑗
𝑞𝜑𝑖

𝑞

𝑟2Ω

𝑑Ω)

⏟                    
LR2𝑖𝑗

 

−Δ𝑡∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑟

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑟
𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                      
DURR𝑖𝑗

 

−Δ𝑡∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑧

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑟
𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                      
DWZR𝑖𝑗

 

−
Δ𝑡

𝐶𝑛𝐶𝑎
∑𝜂𝑗

𝑛+1

6

𝑗=1

(∫ (∑𝜙𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑟

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                    
KNPHIR𝑖𝑗

 

−
𝑅𝑒(1 − 𝜌)

2
∑𝜙𝑗

𝑛+1

6

𝑗=1

(∫ (∑u𝑗
𝑛𝜑𝑗

𝑞

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                  
UU𝑖𝑗

 

=
𝑅𝑒(1 + 𝜌)

2
∑u𝑗

𝑛

6

𝑗=1

(∫𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)
⏟        

U𝑖𝑗 ]
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.37) 
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∑�̅�𝑖

6

𝑖=1

[
 
 
 
 
 

𝑅𝑒∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆1𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                    
LU𝑖𝑗

 

+Δ𝑡𝑅𝑒∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆1𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)(∑𝑢𝑗
𝑛+1

6

𝑗=1

𝜕𝜑𝑗
𝑞

𝜕𝑟
)𝜑𝑗

𝑞𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                              
LKNWR𝑖𝑗

 

+Δ𝑡𝑅𝑒∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆1𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)(∑𝑤𝑗
𝑛+1

6

𝑗=1

𝜕𝜑𝑗
𝑞

𝜕𝑧
)𝜑𝑗

𝑞𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                              
LKNWZ𝑖𝑗

 

+Δ𝑡∑𝑝𝑗
𝑛+1

3

𝑗=1

(∫
𝜕𝜑𝑗

𝑙

𝜕𝑧
𝜑𝑖
𝑞

Ω

𝑑Ω)
⏟          

PZ𝑖𝑗

 

+Δ𝑡∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑟

𝜕𝜑𝑖
𝑞

𝜕𝑟Ω

𝑑Ω)

⏟                      
LL𝑖𝑗

 

+Δ𝑡∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1𝜑𝑗

𝑞

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑧

𝜕𝜑𝑖
𝑞

𝜕𝑧Ω

𝑑Ω)

⏟                      
LM𝑖𝑗

 

−Δ𝑡∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑧

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑧
𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                      
DWZZ𝑖𝑗

 

−Δ𝑡∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜆2𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑟

6

𝑗=1

)
𝜕𝜑𝑗

𝑞

𝜕𝑧
𝜑𝑖
𝑞

Ω

𝑑Ω)

⏟                      
DURZ𝑖𝑗

 

−
Δ𝑡

𝐶𝑛𝐶𝑎
∑𝜂𝑗

𝑛+1

6

𝑗=1

(∫ (∑𝜙𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑧

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                    
KNPHIZ𝑖𝑗

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.38) 
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−
𝑅𝑒(1 − 𝜌)

2
∑𝜙𝑗

𝑛+1

6

𝑗=1

(∫ (∑w𝑗
𝑛𝜑𝑗

𝑞

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                  
UW𝑖𝑗

 

=
𝑅𝑒(1 + 𝜌)

2
∑w𝑗

𝑛

6

𝑗=1

(∫𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)
⏟        

U𝑖𝑗 ]
 
 
 
 

 

 

 

∑�̅�𝑖

3

𝑖=1
[
 
 
 
 

𝑅𝑒∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫
𝜕𝜑𝑗

𝑞

𝜕𝑟
𝜑𝑖
𝑙

Ω

𝑑Ω)
⏟          

PR1𝑖𝑗

+∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫
𝜑𝑗
𝑞𝜑𝑖

𝑙

𝑟Ω

𝑑Ω)
⏟        

OR𝑖𝑗

+∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫
𝜕𝜑𝑗

𝑞

𝜕𝑧Ω

𝜑𝑖
𝑙𝑑Ω)

⏟          
= 0

PZ1𝑖𝑗 ]
 
 
 
 

  

(3.39) 

 

 

∑�̅�𝑖

6

𝑗=1
[
 
 
 
 

𝑅𝑒∑𝜙𝑗
𝑛+1

6

𝑗=1

(∫𝜑𝑗
𝑞
𝜑𝑖
𝑞

Ω

𝑑Ω)
⏟        

U𝑖𝑗

 

+Δ𝑡∑𝑢𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜙𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑟

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                    
KNPHIR𝑖𝑗

 

+Δ𝑡∑𝑤𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜙𝑗
𝑛+1

𝜕𝜑𝑗
𝑞

𝜕𝑧

6

𝑗=1

)𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                    
KNPHIZ𝑖𝑗

 

+
Δ𝑡

𝑃𝑒
∑𝜂𝑗

𝑛+1

6

𝑗=1

(∫
𝜕𝜑𝑗

𝑞

𝜕𝑟

𝜕𝜑𝑖
𝑞

𝜕𝑟Ω

𝑑Ω)
⏟          

L𝑖𝑗

 

(3.40) 
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+
Δ𝑡

𝑃𝑒
∑𝜂𝑗

𝑛+1

6

𝑗=1

(∫
𝜕𝜑𝑗

𝑞

𝜕𝑧

𝜕𝜑𝑖
𝑞

𝜕𝑧Ω

𝑑Ω)
⏟          

M𝑖𝑗

=∑𝜙𝑗
𝑛

6

𝑗=1

(∫𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)
⏟        

U𝑖𝑗 ]
 
 
 
 

 

 

 

∑�̅�𝑖

6

𝑗=1
[
 
 
 
 

∑𝜂𝑗
𝑛+1

6

𝑗=1

(∫𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)
⏟        

U𝑖𝑗

+∑𝜙𝑗
𝑛+1

6

𝑗=1

(∫𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)
⏟        

U𝑖𝑗

 

−∑𝜙𝑗
𝑛+1

6

𝑗=1

(∫ (∑𝜙𝑗
𝑛+2𝜑𝑖

𝑞

6

𝑗=1

)

2

𝜑𝑗
𝑞𝜑𝑖

𝑞

Ω

𝑑Ω)

⏟                    
FF2𝑖𝑗

 

−𝐶𝑛2∑𝜙𝑗
𝑛+1

6

𝑗=1

(∫
𝜕𝜑𝑗

𝑞

𝜕𝑟

𝜕𝜑𝑖
𝑞

𝜕𝑟Ω

𝑑Ω)
⏟          

L𝑖𝑗

 

−𝐶𝑛2∑𝜙𝑗
𝑛+1

6

𝑗=1

(∫
𝜕𝜑𝑗

𝑞

𝜕𝑧

𝜕𝜑𝑖
𝑞

𝜕𝑧Ω

𝑑Ω)
⏟          

M𝑖𝑗

 

= −𝐶𝑛2 (∫ (𝒏∇𝜙)𝜑𝑖
𝑞𝑑𝜕Ω𝑏

𝜕Ω𝑏

)
⏟              

W𝑖 ]
 
 
 
 

  

 

 

(3.41) 

In more compact form, the components of the system to be solved are 

 

𝑅𝑒∑𝑢𝑗
𝑛+1 LU𝑖𝑗 + Δ𝑡𝑅𝑒∑𝑢𝑗

𝑛+1 LKNUR𝑖𝑗 

+Δ𝑡𝑅𝑒∑𝑤𝑗
𝑛+1 LKNUZ𝑖𝑗 + Δ𝑡𝑅𝑒∑𝑝𝑗

𝑛+1 PR𝑖𝑗 

+Δ𝑡∑𝑢𝑗
𝑛+1 LL𝑖𝑗 + Δ𝑡∑𝑢𝑗

𝑛+1 LM𝑖𝑗 + Δ𝑡∑𝑢𝑗
𝑛+1 LR2𝑖𝑗 

 

 

 

 

 

(3.42) 



38 

 

−Δ𝑡∑𝑢𝑗
𝑛+1 DURR𝑖𝑗 − Δ𝑡∑𝑤𝑗

𝑛+1 DWZR𝑖𝑗 

−
Δ𝑡

𝐶𝑛𝐶𝑎
∑𝜂𝑗

𝑛+1 KNPHIR𝑖𝑗 −
𝑅𝑒(1 − 𝜌)

2
∑𝜙𝑗

𝑛+1 UU𝑖𝑗 

=
𝑅𝑒(1 + 𝜌)

2
∑u𝑗

𝑛 U𝑖𝑗 

 

 

𝑅𝑒∑𝑤𝑗
𝑛+1 LU𝑖𝑗 + Δ𝑡𝑅𝑒∑𝑢𝑗

𝑛+1 LKNWR𝑖𝑗 

+Δ𝑡𝑅𝑒∑𝑤𝑗
𝑛+1 LKNWZ𝑖𝑗 + Δ𝑡𝑅𝑒∑𝑝𝑗

𝑛+1 PZ𝑖𝑗 

+Δ𝑡∑𝑤𝑗
𝑛+1 LL𝑖𝑗 + Δ𝑡∑𝑢𝑗

𝑛+1 LM𝑖𝑗 + Δ𝑡∑𝑤𝑗
𝑛+1 LM𝑖𝑗 

−Δ𝑡∑𝑤𝑗
𝑛+1 DWZZ𝑖𝑗 − Δ𝑡∑𝑢𝑗

𝑛+1 DUZR𝑖𝑗 

−
Δ𝑡

𝐶𝑛𝐶𝑎
∑𝜂𝑗

𝑛+1 KNPHIZ𝑖𝑗 −
𝑅𝑒(1 − 𝜌)

2
∑𝜙𝑗

𝑛+1 UW𝑖𝑗 

=
𝑅𝑒(1 + 𝜌)

2
∑w𝑗

𝑛 U𝑖𝑗 

(3.43) 

 

 ∑𝑢𝑗
𝑛+1 PR1𝑖𝑗 +∑𝑢𝑗

𝑛+1 OR𝑖𝑗∑𝑤𝑗
𝑛+1 PZ1𝑖𝑗 = 0 (3.44) 

 

 

∑𝜙𝑗
𝑛+1 U𝑖𝑗 + Δ𝑡∑𝑢𝑗

𝑛+1 KNPHIR𝑖𝑗 + Δ𝑡∑𝑤𝑗
𝑛+1 KNPHIZ𝑖𝑗 

+
Δ𝑡

𝑃𝑒
∑𝜂𝑗

𝑛+1 L𝑖𝑗 +
Δ𝑡

𝑃𝑒
∑𝜂𝑗

𝑛+1M𝑖𝑗 =∑𝜙𝑗
𝑛 U𝑖𝑗 

(3.45) 
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∑𝜂𝑗
𝑛+1 U𝑖𝑗 +∑𝜙𝑗

𝑛+1 U𝑖𝑗 +∑𝜙𝑗
𝑛+1 FF2𝑖𝑗 

−𝐶𝑛2∑𝜙𝑗
𝑛+1 L𝑖𝑗 − 𝐶𝑛

2∑𝜙𝑗
𝑛+1M𝑖𝑗 = −𝐶𝑛

2W𝑖 

(3.46) 

Then all the set of equations are added onto a big matrix, the so-called stiffness matrix, 

𝑲, and right-hand side vector 𝑹, namely 𝑲(𝒔)𝒔 = 𝑹. Demonstration of 𝑲(𝒔) is given 

in Appendix A. We continue onwards with the boundary conditions of the system. 

3.2 Implementation of Boundary Conditions 

In this problem, the boundary conditions are in fact constraint relations, so we use the 

Lagrange multipliers method and extend the system of equations by adding Lagrange 

multipliers 𝐿 for the restrictions, 

 [
𝑲 𝑩𝑻

𝑩 𝟎
] [
𝑈

𝐿.
] = [

𝑹

𝑢𝑖
∗
] (3.47) 

where 𝑩 is a vector with all values equal to zero except its 𝑖𝑡ℎ entry which is equal to 

unity. 𝑢𝑖
∗
 is the imposed constraint at node 𝑖. The constraints are no-slip boundary 

conditions at the rigid substrates, namely the 𝑢 and 𝑤 are set to zero. We also enforce 

𝑢 to be zero at the axisymmetry axis, 𝑟 = 0. This method provides us with no to removel 

of columns/rows of the resulting system which is complicated for multi-dimensional 

problems. Fig 3.2 shows a summary of all the boundary conditions. Zero derivative 

based conditions require no implementation as the resulting surface integrals at the 

corresponding boundary vanish. 
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Figure.3.2: (a) Phase-field BC, (b) Symmetry BC,  

(c) No-slip BC, (d) Stress–free BC. 

 

We note that the treatment of wetting boundary condition is provided by the last 

integral in (3.41) by applying them into the specific nodes on the surface of droplet 

where the transition occurs from 1 to −1. 

After the data is placed into the system, we plot the sparsity pattern as shown in Figure 

3.3. It includes, in order of rows, 𝑟 − 𝑧 momentum, continuity, Cahn-Hilliard and 

chemical potential equations contributions. 
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Figure 3.3: Sparsity pattern of resulting stiffness matrix, (a) full matrix with  

Dirichlet enforcement, the number of non-zero elements, nz, is about 8 million.  

(b) close-up view. 

 

3.3 Treatment of Non-linear Terms 

Because of the non-linear terms on the mass-acceleration in the momentum equations, 

the convective terms on the left-hand side of Cahn-Hilliard equation and the right-hand 

side of chemical potential equation, the stiffness matrix 𝑲 has dependence on the 

unknown variables stored in 𝒔. The system to be solved is 

 𝑲(𝒔)𝒔 = 𝑹. (3.48) 

We define a residual vector as 

 𝒓(𝒔) = 𝑲(𝒔)𝒔 − 𝑹 = 0 (3.49) 

which is a function of unknown vector 𝒔. Finding the roots of 𝒓(𝒔) = 0 provides us the 

solution at each time step which is also known as Newton’s method and given by 
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 𝒔𝑚+1 = 𝒔𝑚 − [
𝜕𝒓

𝜕𝒔
]
−𝟏

[𝑲(𝒔𝑚)𝒔𝑚 − 𝑹]. (3.50) 

This formulation requires evaluating the Tangent stiffness matrix, 𝑻, and iteration until 

the difference between 𝒔𝑚 and 𝒔𝑚+1 is less than a tolerance. 𝑻 is defined as 

 𝑻(𝒖) = [
𝜕𝒓

𝜕𝒔
] .  (3.51) 
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Chapter 4 

Deformation of Drops Impacting onto 

Uniform Surfaces: Validation 

We devote this chapter to validations and impact effects on chemically homogeneous 

surfaces. We give details on the deformation dynamics and scaling laws in Chapter 5. 

4.1 Water and Ethanol Drops 

We study two fundamental problems. The first one is the equilibrium shapes (static) 

of droplets on flat surfaces with uniform surface energy to check the accuracy of the 

wetting boundary condition if it satisfies the expected contact angles. We check partial 

wetting cases in the range of  𝜃 =30°to 150° and measured contact angles within a 

relative error of one degree. The other problem is the impact of drops onto surfaces 

with uniform wetting. For this purpose, we pick two different experimental studies, 

working with water and ethanol drops.  

We, first, validate our solver for impact of water droplets over non-wetting but uniform 

surface energy substrates. To do this, we compare such physics with the experimental 

study of Rioboo [41]. A spherical water droplet diameter of 𝑑 = 3.3 mm impacts with 

a velocity of 𝑢 = 1.18 m/s onto a solid surface at a normal incidence. The equilibrium 

contact angle 𝜃 is uniform and 120°. The droplet has the density of 997 kg/m3 and 

the viscosity of 1. 10−3 Pa. s. For the ambient fluid, namely air, the density and the 

viscosity have values of 1.3 kg/m3 and 1. 7 10−5 Pa. s respectively. The drop-ambient 

fluid surface tension is 𝛾 = 0,073 N/m. With these parameters, we compute the non-

dimensional numbers and summarize all in Table 4.1. The table also includes the Cahn 
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number, 𝐶𝑛, and Peclet number, 𝑃𝑒, which affects the resolution at the interface. We 

set 𝑃𝑒 to 1/(3 𝐶𝑛) and the quadratic interpolation suggested in (2.19 - 2.20) is used 

for density and viscosity interpolations from one phase to another.  

Table 4.1: Non-dimensional parameters for water. 

𝑅𝑒 𝑊𝑒 𝐶𝑛 𝐶𝑎 𝑃𝑒 𝜌 𝜇 

3529.38 57.05 0.01 0.016 33.3 0.0013 0.017 

 

We compare the experimental photographs and our results at the same times in Figure 

4.1 with a good qualitative agreement.  

 

Figure 4.1: Time variation of water droplet profile at (a) 𝑡∗ = 0.0 ms, (b) 𝑡∗ = 0.51 

ms, (c) 𝑡∗ = 1.31 ms, (d) 𝑡∗ = 2.27 ms, (e) 𝑡∗ = 4.71 ms. 
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Our second validation is for an ethanol droplet surrounded with air from the study of 

Lee et al. [42]. Their parameters are, drop is of diameter 𝑑 = 2.0 mm, which impacts 

with initial velocity of 𝑢 = 0.5 m/s onto aluminum surface. The equilibrium contact 

angle 𝜃 chosen is uniform and set to its advancing dynamic value of 𝜃 = 59.8𝑜. The 

droplet density is 789 kg/m3 and the dynamic viscosity is 1.2 10−3 Pa. s. The air’s 

density and the viscosity values are same for this case and was already given above. 

Liquid−gas surface tension value is 𝛾 = 0,023 N/m. The non-dimensional parameters 

are defined in Table 4.2.  

Table 4.2: Non-dimensional parameters for ethanol. 

𝑅𝑒 𝑊𝑒 𝐶𝑛 𝐶𝑎 𝑃𝑒 𝜌 𝜇 

657.5 17.15 0.01 0.016 33.3 0.0015 0.015 

 

We compare our results with ethanol droplet in Figure 4.2. In both cases, the impact 

velocity is the velocity at the time 𝑡 =0.  

To be able to better explain the dynamics, we show the velocity vectors at several 

instances 𝑡 = 0.25, 𝑡 = 0.75, 𝑡 = 1.8 in Figure 4.3 for the water drop. When the 

droplet meets the surface, it tries to attain the contact angle set with the surface while 

the inertia forces the interface to move sideways in the form of a jet as shown in panel 

(a) and (b). The fluid particles along the stagnation streamline, at 𝑟 = 0, have the 

decelerate to stagnate at 𝑧 = 0, while the remaining fluid particles follow a path similar 

to hyperbolas observed in classical stagnation point flow, which is clear from the 

velocity vectors of panel (b). The kinetic energy is converted partly to surface energy, 

and before the maximum extension, the start of receding is clearly seen in the 

magnified region of panel (c) near the contact line. We note the two recirculating 

regions. The furthest one from the incoming flow in the rim is the one near the contact 

line showing the motion is about the stop. The existence of a shear layer is also visible 

due to no-slip boundary condition. The effect of this layer on the fate of an impacting 

drop depends on the relative importance of Reynolds and Weber numbers that we 

discuss in the next chapter.  
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Figure 4.2: Deformation of ethanol droplet. Left panel is our computation, right panel 

is experiments of Lee et al. [42]. The times are (a) 𝑡 = 0.25, (b) 𝑡 = 0.675,  

(c) 𝑡 = 1.95. 
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Figure 4.3: Deformation of water droplet. Left panel is our computation, right panel 

is experiments of Lee et al. [42]. The times are (a) 𝑡 = 0.25, (b) 𝑡 = 0.75,  

(c) 𝑡 = 1.8, (d) magnified contact line region corresponding to (c). 

 

4.2 Impact Regimes 

The model problem is also capable of capturing different impact regimes. We show 

different regimes, defined in Table 1.3, of drop impact we observe with our solver in 

the following. We only show here two examples: complete rebound is shown in Figure 

(a)

(b)

(c)

(d)
(d) 
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4.4 and splash is shown in Figure 4.5 with time frames with time intervals of 0.3. The 

parameters used for these cases are defined in Table 4.3 and 4.4. 

Table 4.3: Non-dimensional parameters for complete rebound. 

𝑅𝑒 𝑊𝑒 𝐶𝑛 𝐶𝑎 𝑃𝑒 𝜌 𝜇 

882.34 1.78 0.01 0.002 0.0054 0.0013 0.017 

 

 

Figure 4.4: Time series for complete rebound. 
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Table 4.4: Non-dimensional parameters for splash. 

𝑅𝑒 𝑊𝑒 𝐶𝑛 𝐶𝑎 𝑃𝑒 𝜌 𝜇 

7058.76 456.4 0.01 0.065 0.0054 0.0013 0.017 

 

 

Figure 4.5: Time series for splash. 

 

4.3 Mesh Structure 

To end up with the comparisons given in Figure 4.1 and Figure 4.2, we first study the 

independence from mesh structure. The mesh resolutions for seven mesh structures are 

shown in Figure 4.6 and the number of elements and smallest mesh sizes are given in 

Table 4.5. The triangulation is structured in a way to increase the resolution in a region 

where drop deforms.  
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Figure 4.6: Mesh structure of the problem. Starting from coarse at the top left to  

fine at the bottom. 
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The representative meshes near the surface and around of the droplet are finer 

compared to the remaining of the domain due to critical regions. The domain is 2.5 by 

2.5 in r-z directions. Because the length scale used in non-dimensionalization is the 

drops diameter, the fine region in the vertical covers a region of almost unit length; we 

reduce linearly the fine region to cover all solid and to make sure the drop is not 

deformed out of this region. The choice of this structure saves computational time.  

In Table 4.5, we present the mesh information. 𝑇ℎ is the characteristic size of a 

triangulation in the fine region. Our coarsest mesh is named 𝑚1. The finest mesh name 

is 𝑚5. We systematically generate seven mesh structures in the order of decreasing 

element size.    

Table 4.5: Mesh information used throughout the study. 

Mesh name Number of elements 𝑇ℎ 

𝑚1  3766 0.031885 

𝑚2 5548 0.024881 

𝑚3 8601 0.021251 

𝑚3−4 11425 0.018207 

𝑚4 15514 0.015166 

𝑚4−5 22330 0.012803 

𝑚5 34946 0.010604 

 

We study the effect of mesh resolution by first observing the maximum extension 

diameter. We show the variation of 𝑑𝑚𝑎𝑥 as function of 𝑡ℎ in Figure 4.7; again for the 

water case. The convergence suggests that resolution below 𝑚3−4 is not sufficient. 
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Figure 4.7: Independence from mesh for the maximum spreading.   

 

We observe, however, that the effect of mesh on the mass conservation is more critical 

on the choice of mesh structure. Especially, the error in the computed volumes of liquid 

grows above 20% for the coarsest mesh at times 𝑡 = 3.0 (𝑡4). The reason is due to 

under resolution of the interface and its diffusion with time. We show this variation in 

Figure 4.8.  

We observe that from the average error of 𝑚3−4 on the 𝑨 is about 2.1% since mass 

conservation within the liquid phase requires a higher resolution and 𝑚3−4was also 

fine on the spreading data’s so we decided use 𝑚4−5 for further runs. The mean error 

of rest of the group are error 𝑚1 = 9.7%, 𝑚2 = 6.47%, 𝑚3 = 3.71%, 𝑚3−4 =

3.12%, 𝑚4 = 3.32%, 𝑚5 = 2.23%. Independent from the mesh, there is an increase 

of error with time. Mean errors of them are error 𝑡1  = 0.4721%, 𝑡2 = 2.6044%, 𝑡3 =

6.2185%, 𝑡4 = 6.2185%.  
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Figure 4.8: Error values at times 𝑡1 = 0.0, 𝑡2 = 1.0, 𝑡3 = 2.0, 𝑡4 = 3.0. 𝑨 is the 

average of time values. In all cases squares represents meshes 𝑚1 to 𝑚5 toward right. 

 

At different times, the volume computations are relatively misleading. The reason 

behind is the definition of the interface location to measure the volume, which also 

includes an error. We compute the volume of droplets by choosing the element nodes 

belonging to the liquid on the mesh. If elements six nodal points average satisfies 𝜙 >

1, it is added to total volume (axisymmetric) of the drop. A representative triangulation 

is given below (Figure 4.9) for 𝑚1 at time 0.59. We mark each element remaining in 

the liquid with a red star at the center of the elements.   But even though this doesn’t 

apply for all the time, the increase of element number decreases the percentage error. 

𝑡4 

𝑡3 

𝑡2 

𝑡1 

𝑨 
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Figure 4.9: Volume traces of a solution. 

 

4.4 Drop Impact Number 

We finally compare if our computation captures the scaling law of an impacting drop 

as discussed in Clanet et. al [43].  There are two distinct regimes: namely capillary and 

viscous. The maximum extension,𝑑𝑚𝑎𝑥, of a drop can be guessed on the grounds of 

energy balance that we discuss in the next chapter. The impact number 𝑃 = 𝑊𝑒/𝑅𝑒4/5 

clearly separates the two regimes. When 𝑃 < 1,  the flow is in capillary regime and 

𝑑𝑚𝑎𝑥 follows a scaling law of 𝑊𝑒1/4, otherwise the flow is in viscous regime and 

𝑑𝑚𝑎𝑥 follows a scaling law of 𝑅𝑒1/5. We show the comparison in Figure 4.10.  𝑑𝑚𝑎𝑥 

and 𝑑𝑜 are the maximum extension of the drop and initial diameter of the drop. The 

symbols shown with black squares (∎) are the Clanet’s results while the ones shown 
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with red squares (∎) are our results. The red triangles ( ) are different surface energy 

results that we discuss in the next chapter.  

 

Figure 4.10: Scaling of maximum extension diameter of impacting drops, 

 𝑁 = 𝑑𝑚𝑎𝑥/(𝑑𝑜𝑅𝑒
1/5) vs. 𝑃 = 𝑊𝑒/𝑅𝑒4/5. 
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Chapter 5 

Deformation of Drops Impacting onto 

Heterogeneous Surfaces 

The deformation of an impacting drop onto surfaces may be altered if the surface 

structure is modified. This modification, for example, can be achieved by varying the 

chemical structure or the typography of the surface. In this chapter, we study the effect 

of structures on the deformation of an impacting drop onto a surface. 

As explained earlier, the kinetic energy of the droplet before the impact is  

 𝐸𝑈 =
1

2
𝜌𝑈2𝜗𝑑 (5.1) 

where 𝜌 is the density of droplet, 𝑈 is the speed just before the impact and 𝜗𝑑is the 

volume of the droplet which is 𝜋𝐷3/6 in an axisymmetric nature. The surface energy 

of the same droplet, on the other hand is,  

 𝐸𝛾 = 𝜋𝐷
2𝛾. (5.2) 

After the impact, part of the summation of the kinetic energy and surface energy is 

converted to surface energy due to varying interface shape, partly consumed by 

viscous deformation, may be converted onto other type of kinetic energy if there is still 

motion before or after the maximum extension. For an impacting drop onto uniform 

surface energy with flat interface, the scaling for this maximum extension can be 

guessed on the grounds of energy balance. For viscous regime (e.g. high viscosity 
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fluids may encounter such a situation), the nature of the deformation is determined by 

the viscous losses. One can integrate the viscous dissipation within the droplet volume 

over a course of time scaling with 𝐷/𝑈, which is roughly 

 𝐸𝜂 = 𝜙𝜂𝜗𝑑
𝐷

𝑈
 (5.3) 

where  𝜙𝜂 is the viscous dissipation defined in index notation as 

 𝜙𝜂 = 𝜂 (
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗

𝜕𝑥𝑖
)
𝜕𝑢𝑖
𝜕𝑥𝑗
. (5.4) 

In (5.4), 𝜕𝑢𝑖/𝜕𝑥𝑗  is the velocity gradient, 𝑖, 𝑗 are dummy indices meaning summation 

over the indices for three coordinate directions. (5.4) scales as 𝜂(𝑈ℎ)2 for a deformed 

droplet in a shape of pancake with corresponding height ℎ and diameter 𝑑. For this 

shape, the volume can be estimated as 

 𝜗 =  
1

4
𝜋𝑑2ℎ. (5.5) 

The scaling for the viscous dissipation can then be written as 

 𝐸𝜂 ≅
𝜋𝜂𝑈𝐷𝑑2

4ℎ
. (5.6) 

The volume conservation requires 

 
1

6
𝜋𝐷3 =

1

4
𝜋𝑑2ℎ 

 
→𝐷3 =

3

2
𝑑2ℎ,  (5.7) 

and if the kinetic energy of the initial state is consumed by the viscous dissipation, the 

diameter at the maximum extension would scale (when the viscous dissipation time 

scales as 𝑑/𝑈) as 

 𝐸𝑈(0)~𝐸𝜂 , (5.8) 
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 𝜌𝑈2𝐷3~
𝜂𝑈𝑑𝑚𝑎𝑥

3

ℎ
, (5.9) 

 
𝜌𝑈𝐷

𝜂
~
𝑑𝑚𝑎𝑥
5

𝐷5
, (5.10) 

 
𝑑𝑚𝑎𝑥
𝐷

~𝑅𝑒1/5. (5.11) 

On the capillary regime, however; the acceleration 𝑎~𝑈2/𝐷 of droplet is much larger 

than the gravitational acceleration for which the height of the droplet scales with 

capillary length 𝑙~(𝛾/(𝜌𝑔))1/2. With this acceleration scale, the height scales then as 

 ℎ~(𝛾/(𝜌𝑎))1/2 = (𝛾𝐷/(𝜌𝑈2))1/2. (5.12) 

Using the volume conservation, we end up with 

 
𝐷4

𝑑𝑚𝑎𝑥4
~

𝛾

𝜌𝑈2𝐷

 
→ 
𝑑𝑚𝑎𝑥
𝐷

~𝑊𝑒1/4. (5.13) 

The energy conservation results with a scaling of 𝑑𝑚𝑎𝑥/𝐷~𝑊𝑒
1/2 which is a larger 

scaling than above.  

The very first results of effect of surface energy variation is given in Figure 4.10. We 

vary the surface energy to satisfy uniform wetting angles of 150°, 120°, 90° and 60°. 

With the same non-dimensional properties; 𝑅𝑒 and 𝑊𝑒 etc. but changing the chemical 

properties of the surface, we show the variation with red triangles in Figure. 4.10. We 

observe that the effect of increasing the surface energy (more wetting) is limited in the 

viscous regime (𝑃 > 1). This motivates us for further investigations for the alterations 

of the surface: generation of heterogeneities, either physical or chemical, in the 

capillary regime.  

We search in this section if there is any change in the deformation if there is a structure 

at the surface. The droplet hits the pin-like structure(s) first then meet, if possible, the 

flat part of the surface. The idea is actually to answer the question whether the initial 

kinetic energy can be dissipated by the existence of such structures. To this end, we 
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systematically change the substrate typography by adding pin-like structures. We  use 

reentrant structures with acute angles which we expect it increases the pinning at the 

corners. A representative axisymmetric drop on such structures is shown in Figure 5.1. 

Here, there are two structures one pin at the center and the other one is in the form of 

a ring. We increase the number of reentrant structures from 2 to 3 and 4 (which covers 

a length about unity which is approximately 0.3 less than the point of maximum 

extension over a flat surface).  

The deformed interface shown in Figure. 5.1 is the water drop impacting used 

previously for validation purposes. The yellow is the droplet at 𝑡 = 1.6, the green 

region is the structured surface. The liquid is not able to penetrate into the grooves, 

slides over the ambient fluid, pins at the leading edge of the last pin, and meets the flat 

surface.  

 

 Figure 5.1: Droplet impacting onto structured surface. 

 

For the following, we show only the symmetry plane. We, first, show the deformation 

of droplet for 2 and 3 structures at the same times in Figure. 5.2. The height of the 

structures is 0.1, with maximum width of 0.2 (top) and minimum width of 0.05 

(bottom) and linear in between. The distance between each structure in radial direction 

is fixed and 0.3.   
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Figure 5.2: Comparison of 3-2 ring structures on the drop deformation, (a) 𝑡 = 0.5,  

(b) 𝑡 = 1, (c) 𝑡 = 1.5, (d) 𝑡 = 2. 

 

The increase in the number of structures obviously slows down the motion. In Figure 

5.2, the left and right panels show the effect of different number of structures on the 

drops deformation while (a) to (d) show the time evolution. The existence of corners 

provides drop break-up as seen in the right panel of Figure 5.2 (d). It occurs while the 

contact line advances over the flat part of the surface. 

(a) 

(b) 

(c) 

(d) 
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We validate this by increasing the number of pins and this time we compare 3 and 4 

structures in Figure 5.3. Interestingly, over 4 structure case, the drop breaks-up over 

the structures, before touching the flat ground. The reasoning behind the slowing down 

of the motion is due to the increase of effective contact angles on such structures and 

pinning of the contact line at the corners of the reentrant rings.   

 

Figure 5.3: Comparison of 4-3 ring structures on the drop deformation, (a) 𝑡 = 0.5,  

(b) 𝑡 = 1, (c) 𝑡 = 1.5, (d) 𝑡 = 2. 

 

(a) 

(b) 

(c) 

(d) 



62 

 

 

Figure 5.4: Velocity vectors corresponding to Figure. 5.3 (d). 

 

In Figure. 5.4, we plot the velocity vectors just after the pinch-off, a ring from the end 

of drop over the 4-structure surface case (left panel). Over 3-structure surface (right 

panel), the interface breaks-up. The interface is not able to enter into the void in the 

reentrant structures; at the last ring, the interface is pinned at the corner which is also 

the case at the right panel after the pinch-off. After pinch-off, one part retracts as seen 

from the right arrows over the third structure while the other part seeks a possible 

equilibrium shape as is clear from the recirculation. A representative mesh structure 

behind the 4-structure solution is given in Figure 5.5. 

 

Figure 5.5: Mesh structure of roughness added surface. 

Apart from the physical heterogeneity, we also change the wettability of the surface. 

The surface, now, is flat but contains varying wetting regions. We first study a case in 

which we observe splashing ring at the end of maximum extension. The parameters 

are 𝑅𝑒 = 355, 𝑊𝑒 = 919.7, the density ratio and viscosity ratio are the same as water 

case. The choice of this specific 𝑅𝑒 and 𝑊𝑒 is to observe splash. The substrate over 

which we observe the splash has a uniform wetting pattern with 𝜃𝑒 = 120
𝑜 . The splash 
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starts around 𝑟 = 1.32. In the neighborhood of this point, we change the wettability 

from 𝑟 = 0.8 to 𝑟 = 1.3 and set 𝜃𝑒 = 60
𝑜. The transition from 𝜃𝑒 = 120

𝑜 to 𝜃𝑒 = 60
𝑜 

region is sharp and this region is actually in a form of ring due to axisymmetry. Smaller 

𝜃𝑒 around this region would reduce the retarding force at the moving contact line and 

increases the spreading.  

In Figure 5.6, we compare two cases at times 𝑡 = 0.0 − 0.9 and in Figure 5.7, we show 

the later times at 𝑡 = 1.2 − 2.1. The left panel is for the uniform surface energy case 

while the right panel is for varying wettability surface. We show that with this simple 

modification, we are able to prevent splash. 

 

Figure 5.6: Comparison of wetting gradient on the drop deformation; left panel is for 

uniform surface; right panel is for non-uniform surface, 

𝑡 = 0.0, 𝑡 = 0.3, 𝑡 = 0.6, 𝑡 = 0.9.  
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Figure 5.7: Later times of Fig. 5.6, 𝑡 = 1.2, 𝑡 = 1.5, 𝑡 = 1.8, 𝑡 = 2.1. 
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Chapter 6 

Conclusion 

We investigate the behavior of droplets impacting on surfaces with heterogeneities, 

specifically chemical applied surfaces and surface with roughness. With this purpose, 

we have developed an axisymmetric Navier-Stokes and Cahn-Hilliard multiphase flow 

model with FEM that can accurately predict droplet behavior on these surfaces, and 

have demonstrated the potential of using this model to design and control droplet-

surface interactions. Through the combination of theoretical understandings and 

numerical simulations, we validate our model comparing with experiments and 

theoretical studies. The deformation obeys the power law relations of 𝑅𝑒 and 𝑊𝑒. 

The observation of the wider spectrum of the effects of varying surface energy on the 

deformation within the capillary regime motivates us to seek for possible deformation 

with addition of new structures, rather than varying 𝑅𝑒 or 𝑊𝑒. We have discussed two 

main results: the effects of (i) physical structures (ii) chemical structures on the 

deformation of impacting drops. In the first scenario, we show how these structures 

retard the motion of the drops and enhance the pinch-off mechanism. In the second 

one, we have demonstrated that splash can be prevented by just playing with the 

wettability of the surfaces.  

The simulations performed reveal various droplet-surface interactions and highlights 

the importance of considering the surface properties when designing and optimizing 

industrial processes that involve droplets. Though the geometry of the used structures 

is limited in the thesis, we believe the proposed model can be used as a tool to predict 

the behavior of droplets on various surfaces and can be used to optimize industrial 

processes. Overall, this thesis has made contribution to the field of multiphase flow, 

and has the potential to lead to the design of more efficient and effective surfaces.  
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Appendix A  

The stiffness matrix K 

 

 

[
 
 
 
 
 
 
 
 
 
 

𝑅𝑒LU𝑖𝑗 + Δ𝑡(𝑅𝑒LKNUR𝑖𝑗
+LL𝑖𝑗 + LM𝑖𝑗 + LR2𝑖𝑗 − DURR𝑖𝑗)

Δ𝑡(𝑅𝑒LKNUZ𝑖𝑗 − DWRZ𝑖𝑗) Δ𝑡PR𝑖𝑗 −
𝑅𝑒(1 − 𝜌)

2
UU𝑖𝑗 −

Δ𝑡

𝐶𝑛𝐶𝑎
KNPHIR𝑖𝑗

Δ𝑡(𝑅𝑒LKNWR𝑖𝑗 − DURZ𝑖𝑗)
𝑅𝑒LU𝑖𝑗 + Δ𝑡(𝑅𝑒LKNWZ𝑖𝑗
+LL𝑖𝑗 + LM𝑖𝑗 − DWZZ𝑖𝑗)

Δ𝑡PZ𝑖𝑗 −
𝑅𝑒(1 − 𝜌)

2
UW𝑖𝑗 −

Δ𝑡

𝐶𝑛𝐶𝑎
KNPHIZ𝑖𝑗

PR1𝑖𝑗 + OR𝑖𝑗  PZ1𝑖𝑗 0 0 0

Δ𝑡 KNPHIR𝑖𝑗 Δ𝑡 KNPHIZ𝑖𝑗 0 U𝑖𝑗
Δ𝑡

𝑃𝑒
(L𝑖𝑗 +M𝑖𝑗)

0 0 0
U𝑖𝑗 − FF2𝑖𝑗

−𝐶𝑛2(L𝑖𝑗 +M𝑖𝑗)
U𝑖𝑗

]
 
 
 
 
 
 
 
 
 
 

⏟                                                                              
K𝑖𝑗(s𝑗)

[
 
 
 
 
 
 
 
 
 
 
𝑢𝑗
𝑛+1

𝑤𝑗
𝑛+1

𝑝𝑗
𝑛+1

𝜙𝑗
𝑛+1

𝜂𝑗
𝑛+1

]
 
 
 
 
 
 
 
 
 
 

⏟    
s𝑗

=

[
 
 
 
 
 
 
 
 
 
 
𝑅𝑒(1 + 𝜌)

2
u𝑗
𝑛U𝑖𝑗

𝑅𝑒(1 + 𝜌)

2
w𝑗
𝑛U𝑖𝑗

0

𝜙𝑗
𝑛U𝑖𝑗

−𝐶𝑛2W𝑖 ]
 
 
 
 
 
 
 
 
 
 

⏟            
R𝑖

 
(A.1) 


